
Computer Program Documentation

You MUST provide evidence showing how the program has been debugged, tested,
trialled and feedback used to improve a final, working outcome.

Program Outline
Provide an overview of the program purpose, the intended end users, how the program will
function, what the end user can expect e.g. messages to help them enter the correct
information, any scores or feedback on their progress and how it ends.

The purpose of the program is to provide a mathematics quiz using addition, subtraction,
multiplication, and division to school students between the ages of 12 to 16. It will provide the
instructions:
‘ *** Instructions ****

To begin, choose the number of rounds.

Then, answer the given question with a number.

Round to two decimal places when necessary.

Good Luck! ’
if the user inputs yes. The program will then continue. If the user inputs ‘no’, it will not print the
instructions, and the game will continue. It will then ask the user how many rounds they would
like to complete between 5 and 15. At any time during the quiz, the user can input ‘xxx’ to exit. If
the user gets the answer correct, the program prints ‘✅ Correct! ✅’. If the user gets it
incorrect, the program will print ‘❌ Incorrect! ❌ The correct answer was: {correct_answer}’.
Once the user has completed or exited the quiz, they have the option to see their game history.
If they choose no, the program prints ‘Thanks for playing.’ and ends the game. If the user inputs
yes, it will show the round number, what the user's input was, and whether or not they were
correct. It will then print ‘Thanks for playing.’

Debugging
Show evidence (screenshots) of bugs (problems/errors) that prevent the program functioning.
Add a brief description of the error and what you did to fix it.

Problem / Error Fixed code Description

ISAAC RICHARDS

Program always output
incorrect even if answer was
correct.

When testing my code, I
found that it didn’t accept any
numbers with decimal places.

To fix the issue, I made my
integer checker able to take
floats.

After solving the last issue,
my integer checker could no
longer accept strings.

I had to add another
try-except loop to solve the
issue.

Testing Schedule
Show evidence that you have tested for expected, boundary (e.g. if the boundary is numbers 5 -
10, test for numbers 4, 5, 10 and 11) and invalid input e.g. entering a name, number etc. Add a
screenshot of the results .

Test plan for Yes_No function

Data Input Expected Output (What should happen) Actual Output (What did happen)

ISAAC RICHARDS

bob ‘Please enter a valid option from the
following list: ['yes', 'no']’

Repeat question

yes Print instructions

Program Continues

no Program Continues

y Print instructions

Program Continues

Test plan for int_check function, error code 1

Data Input Expected Output(What should happen) Actual Output (What did happen)

4 ‘Please enter a number between 5 and
15’

Repeat question

16 ‘Please enter a number between 5 and
15’

Repeat question

xyz ‘Please enter a number between 5 and
15’

Repeat question

5 Program continues

15 Program continues

ISAAC RICHARDS

Test plan for int_check function, error_type 0

Data Input Expected Output (What should happen) Actual Output (What did happen)

-100 Program continues

100 Program continues

0 Program continues

0.123 Program continues

abc ‘Please enter a number’
Ask question again

Program Testing
Show evidence your final working program has been fully tested for expected, boundary and
invalid input. This can either be as screenshots or a short Screencastify video

Stage of quiz Input Expected output Actual output

Instructions

y Program prints
instructions

 Yes Program prints
instructions

 n Program continues
without printing
instructions

ISAAC RICHARDS

 no Program continues
without printing
instructions

 yed Program asks user to
enter an option from
[yes, no]

 123 Program asks user to
enter an option from
[yes, no]

 #$%*^#$ Program asks user to
enter an option from
[yes, no]

Round selection

4 Program asks user to
enter a number
between 5 and 15

 16 Program asks user to
enter a number
between 5 and 15

 5 Program continues

 15 Program continues

 5.5 Program asks user to
enter a number
between 5 and 15

 abc Program asks user to
enter a number
between 5 and 15

 no input Program asks user to
enter a number
between 5 and 15

 #$%*^#$ Program asks user to
enter a number
between 5 and 15

ISAAC RICHARDS

Game Loop 99999999999999999 Either correct /
incorrect, program
continues

 -9999999999999999 Either correct /
incorrect, program
continues

 0 Either correct /
incorrect, program
continues

 0.1 Either correct /
incorrect, program
continues

 -0.1 Either correct /
incorrect, program
continues

 abc Asks user to input a
number

 #$%*^#$ Asks user to input a
number

Game History y Program prints game
history, prints thanks
for playing

 Yes Program prints game
history, prints thanks
for playing

 n Program prints
thanks for playing

 no Program prints
thanks for playing

ISAAC RICHARDS

 yed Program asks user to
enter from list : [yes,
no]

 123 Program asks user to
enter from list : [yes,
no]

 #$%*^#$ Program asks user to
enter from list : [yes,
no]

Usability/End User Testing

Write a list of improvements which need to be made based on end user feedback. Add
information about what you changed to meet the end user feedback. - This is not assessed, but
is good practice.

Post Usability Testing
Show that your program works correctly after making the improvements. This can be
screenshots or a short Screencastify video

ISAAC RICHARDS

	Computer Program Documentation
	Program Outline
	Testing Schedule
	Program Testing
	
	Usability/End User Testing
	Post Usability Testing

