from collections.abc import Generator from typing import ( Any, TypeVar, overload, ) from numpy import ndarray, dtype, generic from numpy._typing import DTypeLike, NDArray # TODO: Set a shape bound once we've got proper shape support _Shape = TypeVar("_Shape", bound=Any) _DType = TypeVar("_DType", bound=dtype[Any]) _ScalarType = TypeVar("_ScalarType", bound=generic) _Index = ( ellipsis | int | slice | tuple[ellipsis | int | slice, ...] ) __all__: list[str] # NOTE: In reality `Arrayterator` does not actually inherit from `ndarray`, # but its ``__getattr__` method does wrap around the former and thus has # access to all its methods class Arrayterator(ndarray[_Shape, _DType]): var: ndarray[_Shape, _DType] # type: ignore[assignment] buf_size: None | int start: list[int] stop: list[int] step: list[int] @property # type: ignore[misc] def shape(self) -> tuple[int, ...]: ... @property def flat(self: NDArray[_ScalarType]) -> Generator[_ScalarType, None, None]: ... def __init__( self, var: ndarray[_Shape, _DType], buf_size: None | int = ... ) -> None: ... @overload def __array__(self, dtype: None = ..., copy: None | bool = ...) -> ndarray[Any, _DType]: ... @overload def __array__(self, dtype: DTypeLike, copy: None | bool = ...) -> NDArray[Any]: ... def __getitem__(self, index: _Index) -> Arrayterator[Any, _DType]: ... def __iter__(self) -> Generator[ndarray[Any, _DType], None, None]: ...