from __future__ import annotations from functools import partial import operator import re from typing import ( TYPE_CHECKING, Callable, Union, ) import warnings import numpy as np from pandas._libs import ( lib, missing as libmissing, ) from pandas.compat import ( pa_version_under10p1, pa_version_under13p0, ) from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import ( is_bool_dtype, is_integer_dtype, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype, ) from pandas.core.dtypes.missing import isna from pandas.core.arrays._arrow_string_mixins import ArrowStringArrayMixin from pandas.core.arrays.arrow import ArrowExtensionArray from pandas.core.arrays.boolean import BooleanDtype from pandas.core.arrays.integer import Int64Dtype from pandas.core.arrays.numeric import NumericDtype from pandas.core.arrays.string_ import ( BaseStringArray, StringDtype, ) from pandas.core.ops import invalid_comparison from pandas.core.strings.object_array import ObjectStringArrayMixin if not pa_version_under10p1: import pyarrow as pa import pyarrow.compute as pc from pandas.core.arrays.arrow._arrow_utils import fallback_performancewarning if TYPE_CHECKING: from collections.abc import Sequence from pandas._typing import ( ArrayLike, AxisInt, Dtype, Scalar, npt, ) from pandas import Series ArrowStringScalarOrNAT = Union[str, libmissing.NAType] def _chk_pyarrow_available() -> None: if pa_version_under10p1: msg = "pyarrow>=10.0.1 is required for PyArrow backed ArrowExtensionArray." raise ImportError(msg) # TODO: Inherit directly from BaseStringArrayMethods. Currently we inherit from # ObjectStringArrayMixin because we want to have the object-dtype based methods as # fallback for the ones that pyarrow doesn't yet support class ArrowStringArray(ObjectStringArrayMixin, ArrowExtensionArray, BaseStringArray): """ Extension array for string data in a ``pyarrow.ChunkedArray``. .. warning:: ArrowStringArray is considered experimental. The implementation and parts of the API may change without warning. Parameters ---------- values : pyarrow.Array or pyarrow.ChunkedArray The array of data. Attributes ---------- None Methods ------- None See Also -------- :func:`pandas.array` The recommended function for creating a ArrowStringArray. Series.str The string methods are available on Series backed by a ArrowStringArray. Notes ----- ArrowStringArray returns a BooleanArray for comparison methods. Examples -------- >>> pd.array(['This is', 'some text', None, 'data.'], dtype="string[pyarrow]") ['This is', 'some text', , 'data.'] Length: 4, dtype: string """ # error: Incompatible types in assignment (expression has type "StringDtype", # base class "ArrowExtensionArray" defined the type as "ArrowDtype") _dtype: StringDtype # type: ignore[assignment] _storage = "pyarrow" def __init__(self, values) -> None: _chk_pyarrow_available() if isinstance(values, (pa.Array, pa.ChunkedArray)) and pa.types.is_string( values.type ): values = pc.cast(values, pa.large_string()) super().__init__(values) self._dtype = StringDtype(storage=self._storage) if not pa.types.is_large_string(self._pa_array.type) and not ( pa.types.is_dictionary(self._pa_array.type) and pa.types.is_large_string(self._pa_array.type.value_type) ): raise ValueError( "ArrowStringArray requires a PyArrow (chunked) array of " "large_string type" ) @classmethod def _box_pa_scalar(cls, value, pa_type: pa.DataType | None = None) -> pa.Scalar: pa_scalar = super()._box_pa_scalar(value, pa_type) if pa.types.is_string(pa_scalar.type) and pa_type is None: pa_scalar = pc.cast(pa_scalar, pa.large_string()) return pa_scalar @classmethod def _box_pa_array( cls, value, pa_type: pa.DataType | None = None, copy: bool = False ) -> pa.Array | pa.ChunkedArray: pa_array = super()._box_pa_array(value, pa_type) if pa.types.is_string(pa_array.type) and pa_type is None: pa_array = pc.cast(pa_array, pa.large_string()) return pa_array def __len__(self) -> int: """ Length of this array. Returns ------- length : int """ return len(self._pa_array) @classmethod def _from_sequence(cls, scalars, *, dtype: Dtype | None = None, copy: bool = False): from pandas.core.arrays.masked import BaseMaskedArray _chk_pyarrow_available() if dtype and not (isinstance(dtype, str) and dtype == "string"): dtype = pandas_dtype(dtype) assert isinstance(dtype, StringDtype) and dtype.storage in ( "pyarrow", "pyarrow_numpy", ) if isinstance(scalars, BaseMaskedArray): # avoid costly conversion to object dtype in ensure_string_array and # numerical issues with Float32Dtype na_values = scalars._mask result = scalars._data result = lib.ensure_string_array(result, copy=copy, convert_na_value=False) return cls(pa.array(result, mask=na_values, type=pa.large_string())) elif isinstance(scalars, (pa.Array, pa.ChunkedArray)): return cls(pc.cast(scalars, pa.large_string())) # convert non-na-likes to str result = lib.ensure_string_array(scalars, copy=copy) return cls(pa.array(result, type=pa.large_string(), from_pandas=True)) @classmethod def _from_sequence_of_strings( cls, strings, dtype: Dtype | None = None, copy: bool = False ): return cls._from_sequence(strings, dtype=dtype, copy=copy) @property def dtype(self) -> StringDtype: # type: ignore[override] """ An instance of 'string[pyarrow]'. """ return self._dtype def insert(self, loc: int, item) -> ArrowStringArray: if not isinstance(item, str) and item is not libmissing.NA: raise TypeError("Scalar must be NA or str") return super().insert(loc, item) @classmethod def _result_converter(cls, values, na=None): return BooleanDtype().__from_arrow__(values) def _maybe_convert_setitem_value(self, value): """Maybe convert value to be pyarrow compatible.""" if is_scalar(value): if isna(value): value = None elif not isinstance(value, str): raise TypeError("Scalar must be NA or str") else: value = np.array(value, dtype=object, copy=True) value[isna(value)] = None for v in value: if not (v is None or isinstance(v, str)): raise TypeError("Scalar must be NA or str") return super()._maybe_convert_setitem_value(value) def isin(self, values: ArrayLike) -> npt.NDArray[np.bool_]: value_set = [ pa_scalar.as_py() for pa_scalar in [pa.scalar(value, from_pandas=True) for value in values] if pa_scalar.type in (pa.string(), pa.null(), pa.large_string()) ] # short-circuit to return all False array. if not len(value_set): return np.zeros(len(self), dtype=bool) result = pc.is_in( self._pa_array, value_set=pa.array(value_set, type=self._pa_array.type) ) # pyarrow 2.0.0 returned nulls, so we explicily specify dtype to convert nulls # to False return np.array(result, dtype=np.bool_) def astype(self, dtype, copy: bool = True): dtype = pandas_dtype(dtype) if dtype == self.dtype: if copy: return self.copy() return self elif isinstance(dtype, NumericDtype): data = self._pa_array.cast(pa.from_numpy_dtype(dtype.numpy_dtype)) return dtype.__from_arrow__(data) elif isinstance(dtype, np.dtype) and np.issubdtype(dtype, np.floating): return self.to_numpy(dtype=dtype, na_value=np.nan) return super().astype(dtype, copy=copy) @property def _data(self): # dask accesses ._data directlys warnings.warn( f"{type(self).__name__}._data is a deprecated and will be removed " "in a future version, use ._pa_array instead", FutureWarning, stacklevel=find_stack_level(), ) return self._pa_array # ------------------------------------------------------------------------ # String methods interface # error: Incompatible types in assignment (expression has type "NAType", # base class "ObjectStringArrayMixin" defined the type as "float") _str_na_value = libmissing.NA # type: ignore[assignment] def _str_map( self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True ): # TODO: de-duplicate with StringArray method. This method is moreless copy and # paste. from pandas.arrays import ( BooleanArray, IntegerArray, ) if dtype is None: dtype = self.dtype if na_value is None: na_value = self.dtype.na_value mask = isna(self) arr = np.asarray(self) if is_integer_dtype(dtype) or is_bool_dtype(dtype): constructor: type[IntegerArray | BooleanArray] if is_integer_dtype(dtype): constructor = IntegerArray else: constructor = BooleanArray na_value_is_na = isna(na_value) if na_value_is_na: na_value = 1 result = lib.map_infer_mask( arr, f, mask.view("uint8"), convert=False, na_value=na_value, # error: Argument 1 to "dtype" has incompatible type # "Union[ExtensionDtype, str, dtype[Any], Type[object]]"; expected # "Type[object]" dtype=np.dtype(dtype), # type: ignore[arg-type] ) if not na_value_is_na: mask[:] = False return constructor(result, mask) elif is_string_dtype(dtype) and not is_object_dtype(dtype): # i.e. StringDtype result = lib.map_infer_mask( arr, f, mask.view("uint8"), convert=False, na_value=na_value ) result = pa.array( result, mask=mask, type=pa.large_string(), from_pandas=True ) return type(self)(result) else: # This is when the result type is object. We reach this when # -> We know the result type is truly object (e.g. .encode returns bytes # or .findall returns a list). # -> We don't know the result type. E.g. `.get` can return anything. return lib.map_infer_mask(arr, f, mask.view("uint8")) def _str_contains( self, pat, case: bool = True, flags: int = 0, na=np.nan, regex: bool = True ): if flags: fallback_performancewarning() return super()._str_contains(pat, case, flags, na, regex) if regex: result = pc.match_substring_regex(self._pa_array, pat, ignore_case=not case) else: result = pc.match_substring(self._pa_array, pat, ignore_case=not case) result = self._result_converter(result, na=na) if not isna(na): result[isna(result)] = bool(na) return result def _str_startswith(self, pat: str | tuple[str, ...], na: Scalar | None = None): if isinstance(pat, str): result = pc.starts_with(self._pa_array, pattern=pat) else: if len(pat) == 0: # mimic existing behaviour of string extension array # and python string method result = pa.array( np.zeros(len(self._pa_array), dtype=bool), mask=isna(self._pa_array) ) else: result = pc.starts_with(self._pa_array, pattern=pat[0]) for p in pat[1:]: result = pc.or_(result, pc.starts_with(self._pa_array, pattern=p)) if not isna(na): result = result.fill_null(na) return self._result_converter(result) def _str_endswith(self, pat: str | tuple[str, ...], na: Scalar | None = None): if isinstance(pat, str): result = pc.ends_with(self._pa_array, pattern=pat) else: if len(pat) == 0: # mimic existing behaviour of string extension array # and python string method result = pa.array( np.zeros(len(self._pa_array), dtype=bool), mask=isna(self._pa_array) ) else: result = pc.ends_with(self._pa_array, pattern=pat[0]) for p in pat[1:]: result = pc.or_(result, pc.ends_with(self._pa_array, pattern=p)) if not isna(na): result = result.fill_null(na) return self._result_converter(result) def _str_replace( self, pat: str | re.Pattern, repl: str | Callable, n: int = -1, case: bool = True, flags: int = 0, regex: bool = True, ): if isinstance(pat, re.Pattern) or callable(repl) or not case or flags: fallback_performancewarning() return super()._str_replace(pat, repl, n, case, flags, regex) func = pc.replace_substring_regex if regex else pc.replace_substring result = func(self._pa_array, pattern=pat, replacement=repl, max_replacements=n) return type(self)(result) def _str_repeat(self, repeats: int | Sequence[int]): if not isinstance(repeats, int): return super()._str_repeat(repeats) else: return type(self)(pc.binary_repeat(self._pa_array, repeats)) def _str_match( self, pat: str, case: bool = True, flags: int = 0, na: Scalar | None = None ): if not pat.startswith("^"): pat = f"^{pat}" return self._str_contains(pat, case, flags, na, regex=True) def _str_fullmatch( self, pat, case: bool = True, flags: int = 0, na: Scalar | None = None ): if not pat.endswith("$") or pat.endswith("\\$"): pat = f"{pat}$" return self._str_match(pat, case, flags, na) def _str_slice( self, start: int | None = None, stop: int | None = None, step: int | None = None ): if stop is None: return super()._str_slice(start, stop, step) if start is None: start = 0 if step is None: step = 1 return type(self)( pc.utf8_slice_codeunits(self._pa_array, start=start, stop=stop, step=step) ) def _str_isalnum(self): result = pc.utf8_is_alnum(self._pa_array) return self._result_converter(result) def _str_isalpha(self): result = pc.utf8_is_alpha(self._pa_array) return self._result_converter(result) def _str_isdecimal(self): result = pc.utf8_is_decimal(self._pa_array) return self._result_converter(result) def _str_isdigit(self): result = pc.utf8_is_digit(self._pa_array) return self._result_converter(result) def _str_islower(self): result = pc.utf8_is_lower(self._pa_array) return self._result_converter(result) def _str_isnumeric(self): result = pc.utf8_is_numeric(self._pa_array) return self._result_converter(result) def _str_isspace(self): result = pc.utf8_is_space(self._pa_array) return self._result_converter(result) def _str_istitle(self): result = pc.utf8_is_title(self._pa_array) return self._result_converter(result) def _str_isupper(self): result = pc.utf8_is_upper(self._pa_array) return self._result_converter(result) def _str_len(self): result = pc.utf8_length(self._pa_array) return self._convert_int_dtype(result) def _str_lower(self): return type(self)(pc.utf8_lower(self._pa_array)) def _str_upper(self): return type(self)(pc.utf8_upper(self._pa_array)) def _str_strip(self, to_strip=None): if to_strip is None: result = pc.utf8_trim_whitespace(self._pa_array) else: result = pc.utf8_trim(self._pa_array, characters=to_strip) return type(self)(result) def _str_lstrip(self, to_strip=None): if to_strip is None: result = pc.utf8_ltrim_whitespace(self._pa_array) else: result = pc.utf8_ltrim(self._pa_array, characters=to_strip) return type(self)(result) def _str_rstrip(self, to_strip=None): if to_strip is None: result = pc.utf8_rtrim_whitespace(self._pa_array) else: result = pc.utf8_rtrim(self._pa_array, characters=to_strip) return type(self)(result) def _str_removeprefix(self, prefix: str): if not pa_version_under13p0: starts_with = pc.starts_with(self._pa_array, pattern=prefix) removed = pc.utf8_slice_codeunits(self._pa_array, len(prefix)) result = pc.if_else(starts_with, removed, self._pa_array) return type(self)(result) return super()._str_removeprefix(prefix) def _str_removesuffix(self, suffix: str): ends_with = pc.ends_with(self._pa_array, pattern=suffix) removed = pc.utf8_slice_codeunits(self._pa_array, 0, stop=-len(suffix)) result = pc.if_else(ends_with, removed, self._pa_array) return type(self)(result) def _str_count(self, pat: str, flags: int = 0): if flags: return super()._str_count(pat, flags) result = pc.count_substring_regex(self._pa_array, pat) return self._convert_int_dtype(result) def _str_find(self, sub: str, start: int = 0, end: int | None = None): if start != 0 and end is not None: slices = pc.utf8_slice_codeunits(self._pa_array, start, stop=end) result = pc.find_substring(slices, sub) not_found = pc.equal(result, -1) offset_result = pc.add(result, end - start) result = pc.if_else(not_found, result, offset_result) elif start == 0 and end is None: slices = self._pa_array result = pc.find_substring(slices, sub) else: return super()._str_find(sub, start, end) return self._convert_int_dtype(result) def _str_get_dummies(self, sep: str = "|"): dummies_pa, labels = ArrowExtensionArray(self._pa_array)._str_get_dummies(sep) if len(labels) == 0: return np.empty(shape=(0, 0), dtype=np.int64), labels dummies = np.vstack(dummies_pa.to_numpy()) return dummies.astype(np.int64, copy=False), labels def _convert_int_dtype(self, result): return Int64Dtype().__from_arrow__(result) def _reduce( self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs ): result = self._reduce_calc(name, skipna=skipna, keepdims=keepdims, **kwargs) if name in ("argmin", "argmax") and isinstance(result, pa.Array): return self._convert_int_dtype(result) elif isinstance(result, pa.Array): return type(self)(result) else: return result def _rank( self, *, axis: AxisInt = 0, method: str = "average", na_option: str = "keep", ascending: bool = True, pct: bool = False, ): """ See Series.rank.__doc__. """ return self._convert_int_dtype( self._rank_calc( axis=axis, method=method, na_option=na_option, ascending=ascending, pct=pct, ) ) class ArrowStringArrayNumpySemantics(ArrowStringArray): _storage = "pyarrow_numpy" @classmethod def _result_converter(cls, values, na=None): if not isna(na): values = values.fill_null(bool(na)) return ArrowExtensionArray(values).to_numpy(na_value=np.nan) def __getattribute__(self, item): # ArrowStringArray and we both inherit from ArrowExtensionArray, which # creates inheritance problems (Diamond inheritance) if item in ArrowStringArrayMixin.__dict__ and item not in ( "_pa_array", "__dict__", ): return partial(getattr(ArrowStringArrayMixin, item), self) return super().__getattribute__(item) def _str_map( self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True ): if dtype is None: dtype = self.dtype if na_value is None: na_value = self.dtype.na_value mask = isna(self) arr = np.asarray(self) if is_integer_dtype(dtype) or is_bool_dtype(dtype): if is_integer_dtype(dtype): na_value = np.nan else: na_value = False try: result = lib.map_infer_mask( arr, f, mask.view("uint8"), convert=False, na_value=na_value, dtype=np.dtype(dtype), # type: ignore[arg-type] ) return result except ValueError: result = lib.map_infer_mask( arr, f, mask.view("uint8"), convert=False, na_value=na_value, ) if convert and result.dtype == object: result = lib.maybe_convert_objects(result) return result elif is_string_dtype(dtype) and not is_object_dtype(dtype): # i.e. StringDtype result = lib.map_infer_mask( arr, f, mask.view("uint8"), convert=False, na_value=na_value ) result = pa.array( result, mask=mask, type=pa.large_string(), from_pandas=True ) return type(self)(result) else: # This is when the result type is object. We reach this when # -> We know the result type is truly object (e.g. .encode returns bytes # or .findall returns a list). # -> We don't know the result type. E.g. `.get` can return anything. return lib.map_infer_mask(arr, f, mask.view("uint8")) def _convert_int_dtype(self, result): if isinstance(result, pa.Array): result = result.to_numpy(zero_copy_only=False) else: result = result.to_numpy() if result.dtype == np.int32: result = result.astype(np.int64) return result def _cmp_method(self, other, op): try: result = super()._cmp_method(other, op) except pa.ArrowNotImplementedError: return invalid_comparison(self, other, op) if op == operator.ne: return result.to_numpy(np.bool_, na_value=True) else: return result.to_numpy(np.bool_, na_value=False) def value_counts(self, dropna: bool = True) -> Series: from pandas import Series result = super().value_counts(dropna) return Series( result._values.to_numpy(), index=result.index, name=result.name, copy=False ) def _reduce( self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs ): if name in ["any", "all"]: if not skipna and name == "all": nas = pc.invert(pc.is_null(self._pa_array)) arr = pc.and_kleene(nas, pc.not_equal(self._pa_array, "")) else: arr = pc.not_equal(self._pa_array, "") return ArrowExtensionArray(arr)._reduce( name, skipna=skipna, keepdims=keepdims, **kwargs ) else: return super()._reduce(name, skipna=skipna, keepdims=keepdims, **kwargs) def insert(self, loc: int, item) -> ArrowStringArrayNumpySemantics: if item is np.nan: item = libmissing.NA return super().insert(loc, item) # type: ignore[return-value]