from __future__ import annotations from datetime import timedelta import operator from typing import ( TYPE_CHECKING, cast, ) import numpy as np from pandas._libs import ( lib, tslibs, ) from pandas._libs.tslibs import ( NaT, NaTType, Tick, Timedelta, astype_overflowsafe, get_supported_dtype, iNaT, is_supported_dtype, periods_per_second, ) from pandas._libs.tslibs.conversion import cast_from_unit_vectorized from pandas._libs.tslibs.fields import ( get_timedelta_days, get_timedelta_field, ) from pandas._libs.tslibs.timedeltas import ( array_to_timedelta64, floordiv_object_array, ints_to_pytimedelta, parse_timedelta_unit, truediv_object_array, ) from pandas.compat.numpy import function as nv from pandas.util._validators import validate_endpoints from pandas.core.dtypes.common import ( TD64NS_DTYPE, is_float_dtype, is_integer_dtype, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.missing import isna from pandas.core import ( nanops, roperator, ) from pandas.core.array_algos import datetimelike_accumulations from pandas.core.arrays import datetimelike as dtl from pandas.core.arrays._ranges import generate_regular_range import pandas.core.common as com from pandas.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from collections.abc import Iterator from pandas._typing import ( AxisInt, DateTimeErrorChoices, DtypeObj, NpDtype, Self, npt, ) from pandas import DataFrame import textwrap def _field_accessor(name: str, alias: str, docstring: str): def f(self) -> np.ndarray: values = self.asi8 if alias == "days": result = get_timedelta_days(values, reso=self._creso) else: # error: Incompatible types in assignment ( # expression has type "ndarray[Any, dtype[signedinteger[_32Bit]]]", # variable has type "ndarray[Any, dtype[signedinteger[_64Bit]]] result = get_timedelta_field(values, alias, reso=self._creso) # type: ignore[assignment] if self._hasna: result = self._maybe_mask_results( result, fill_value=None, convert="float64" ) return result f.__name__ = name f.__doc__ = f"\n{docstring}\n" return property(f) class TimedeltaArray(dtl.TimelikeOps): """ Pandas ExtensionArray for timedelta data. .. warning:: TimedeltaArray is currently experimental, and its API may change without warning. In particular, :attr:`TimedeltaArray.dtype` is expected to change to be an instance of an ``ExtensionDtype`` subclass. Parameters ---------- values : array-like The timedelta data. dtype : numpy.dtype Currently, only ``numpy.dtype("timedelta64[ns]")`` is accepted. freq : Offset, optional copy : bool, default False Whether to copy the underlying array of data. Attributes ---------- None Methods ------- None Examples -------- >>> pd.arrays.TimedeltaArray._from_sequence(pd.TimedeltaIndex(['1h', '2h'])) ['0 days 01:00:00', '0 days 02:00:00'] Length: 2, dtype: timedelta64[ns] """ _typ = "timedeltaarray" _internal_fill_value = np.timedelta64("NaT", "ns") _recognized_scalars = (timedelta, np.timedelta64, Tick) _is_recognized_dtype = lambda x: lib.is_np_dtype(x, "m") _infer_matches = ("timedelta", "timedelta64") @property def _scalar_type(self) -> type[Timedelta]: return Timedelta __array_priority__ = 1000 # define my properties & methods for delegation _other_ops: list[str] = [] _bool_ops: list[str] = [] _object_ops: list[str] = ["freq"] _field_ops: list[str] = ["days", "seconds", "microseconds", "nanoseconds"] _datetimelike_ops: list[str] = _field_ops + _object_ops + _bool_ops + ["unit"] _datetimelike_methods: list[str] = [ "to_pytimedelta", "total_seconds", "round", "floor", "ceil", "as_unit", ] # Note: ndim must be defined to ensure NaT.__richcmp__(TimedeltaArray) # operates pointwise. def _box_func(self, x: np.timedelta64) -> Timedelta | NaTType: y = x.view("i8") if y == NaT._value: return NaT return Timedelta._from_value_and_reso(y, reso=self._creso) @property # error: Return type "dtype" of "dtype" incompatible with return type # "ExtensionDtype" in supertype "ExtensionArray" def dtype(self) -> np.dtype[np.timedelta64]: # type: ignore[override] """ The dtype for the TimedeltaArray. .. warning:: A future version of pandas will change dtype to be an instance of a :class:`pandas.api.extensions.ExtensionDtype` subclass, not a ``numpy.dtype``. Returns ------- numpy.dtype """ return self._ndarray.dtype # ---------------------------------------------------------------- # Constructors _freq = None _default_dtype = TD64NS_DTYPE # used in TimeLikeOps.__init__ @classmethod def _validate_dtype(cls, values, dtype): # used in TimeLikeOps.__init__ dtype = _validate_td64_dtype(dtype) _validate_td64_dtype(values.dtype) if dtype != values.dtype: raise ValueError("Values resolution does not match dtype.") return dtype # error: Signature of "_simple_new" incompatible with supertype "NDArrayBacked" @classmethod def _simple_new( # type: ignore[override] cls, values: npt.NDArray[np.timedelta64], freq: Tick | None = None, dtype: np.dtype[np.timedelta64] = TD64NS_DTYPE, ) -> Self: # Require td64 dtype, not unit-less, matching values.dtype assert lib.is_np_dtype(dtype, "m") assert not tslibs.is_unitless(dtype) assert isinstance(values, np.ndarray), type(values) assert dtype == values.dtype assert freq is None or isinstance(freq, Tick) result = super()._simple_new(values=values, dtype=dtype) result._freq = freq return result @classmethod def _from_sequence(cls, data, *, dtype=None, copy: bool = False) -> Self: if dtype: dtype = _validate_td64_dtype(dtype) data, freq = sequence_to_td64ns(data, copy=copy, unit=None) if dtype is not None: data = astype_overflowsafe(data, dtype=dtype, copy=False) return cls._simple_new(data, dtype=data.dtype, freq=freq) @classmethod def _from_sequence_not_strict( cls, data, *, dtype=None, copy: bool = False, freq=lib.no_default, unit=None, ) -> Self: """ _from_sequence_not_strict but without responsibility for finding the result's `freq`. """ if dtype: dtype = _validate_td64_dtype(dtype) assert unit not in ["Y", "y", "M"] # caller is responsible for checking data, inferred_freq = sequence_to_td64ns(data, copy=copy, unit=unit) if dtype is not None: data = astype_overflowsafe(data, dtype=dtype, copy=False) result = cls._simple_new(data, dtype=data.dtype, freq=inferred_freq) result._maybe_pin_freq(freq, {}) return result @classmethod def _generate_range( cls, start, end, periods, freq, closed=None, *, unit: str | None = None ) -> Self: periods = dtl.validate_periods(periods) if freq is None and any(x is None for x in [periods, start, end]): raise ValueError("Must provide freq argument if no data is supplied") if com.count_not_none(start, end, periods, freq) != 3: raise ValueError( "Of the four parameters: start, end, periods, " "and freq, exactly three must be specified" ) if start is not None: start = Timedelta(start).as_unit("ns") if end is not None: end = Timedelta(end).as_unit("ns") if unit is not None: if unit not in ["s", "ms", "us", "ns"]: raise ValueError("'unit' must be one of 's', 'ms', 'us', 'ns'") else: unit = "ns" if start is not None and unit is not None: start = start.as_unit(unit, round_ok=False) if end is not None and unit is not None: end = end.as_unit(unit, round_ok=False) left_closed, right_closed = validate_endpoints(closed) if freq is not None: index = generate_regular_range(start, end, periods, freq, unit=unit) else: index = np.linspace(start._value, end._value, periods).astype("i8") if not left_closed: index = index[1:] if not right_closed: index = index[:-1] td64values = index.view(f"m8[{unit}]") return cls._simple_new(td64values, dtype=td64values.dtype, freq=freq) # ---------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value) -> np.timedelta64: if not isinstance(value, self._scalar_type) and value is not NaT: raise ValueError("'value' should be a Timedelta.") self._check_compatible_with(value) if value is NaT: return np.timedelta64(value._value, self.unit) else: return value.as_unit(self.unit).asm8 def _scalar_from_string(self, value) -> Timedelta | NaTType: return Timedelta(value) def _check_compatible_with(self, other) -> None: # we don't have anything to validate. pass # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods def astype(self, dtype, copy: bool = True): # We handle # --> timedelta64[ns] # --> timedelta64 # DatetimeLikeArrayMixin super call handles other cases dtype = pandas_dtype(dtype) if lib.is_np_dtype(dtype, "m"): if dtype == self.dtype: if copy: return self.copy() return self if is_supported_dtype(dtype): # unit conversion e.g. timedelta64[s] res_values = astype_overflowsafe(self._ndarray, dtype, copy=False) return type(self)._simple_new( res_values, dtype=res_values.dtype, freq=self.freq ) else: raise ValueError( f"Cannot convert from {self.dtype} to {dtype}. " "Supported resolutions are 's', 'ms', 'us', 'ns'" ) return dtl.DatetimeLikeArrayMixin.astype(self, dtype, copy=copy) def __iter__(self) -> Iterator: if self.ndim > 1: for i in range(len(self)): yield self[i] else: # convert in chunks of 10k for efficiency data = self._ndarray length = len(self) chunksize = 10000 chunks = (length // chunksize) + 1 for i in range(chunks): start_i = i * chunksize end_i = min((i + 1) * chunksize, length) converted = ints_to_pytimedelta(data[start_i:end_i], box=True) yield from converted # ---------------------------------------------------------------- # Reductions def sum( self, *, axis: AxisInt | None = None, dtype: NpDtype | None = None, out=None, keepdims: bool = False, initial=None, skipna: bool = True, min_count: int = 0, ): nv.validate_sum( (), {"dtype": dtype, "out": out, "keepdims": keepdims, "initial": initial} ) result = nanops.nansum( self._ndarray, axis=axis, skipna=skipna, min_count=min_count ) return self._wrap_reduction_result(axis, result) def std( self, *, axis: AxisInt | None = None, dtype: NpDtype | None = None, out=None, ddof: int = 1, keepdims: bool = False, skipna: bool = True, ): nv.validate_stat_ddof_func( (), {"dtype": dtype, "out": out, "keepdims": keepdims}, fname="std" ) result = nanops.nanstd(self._ndarray, axis=axis, skipna=skipna, ddof=ddof) if axis is None or self.ndim == 1: return self._box_func(result) return self._from_backing_data(result) # ---------------------------------------------------------------- # Accumulations def _accumulate(self, name: str, *, skipna: bool = True, **kwargs): if name == "cumsum": op = getattr(datetimelike_accumulations, name) result = op(self._ndarray.copy(), skipna=skipna, **kwargs) return type(self)._simple_new(result, freq=None, dtype=self.dtype) elif name == "cumprod": raise TypeError("cumprod not supported for Timedelta.") else: return super()._accumulate(name, skipna=skipna, **kwargs) # ---------------------------------------------------------------- # Rendering Methods def _formatter(self, boxed: bool = False): from pandas.io.formats.format import get_format_timedelta64 return get_format_timedelta64(self, box=True) def _format_native_types( self, *, na_rep: str | float = "NaT", date_format=None, **kwargs ) -> npt.NDArray[np.object_]: from pandas.io.formats.format import get_format_timedelta64 # Relies on TimeDelta._repr_base formatter = get_format_timedelta64(self, na_rep) # equiv: np.array([formatter(x) for x in self._ndarray]) # but independent of dimension return np.frompyfunc(formatter, 1, 1)(self._ndarray) # ---------------------------------------------------------------- # Arithmetic Methods def _add_offset(self, other): assert not isinstance(other, Tick) raise TypeError( f"cannot add the type {type(other).__name__} to a {type(self).__name__}" ) @unpack_zerodim_and_defer("__mul__") def __mul__(self, other) -> Self: if is_scalar(other): # numpy will accept float and int, raise TypeError for others result = self._ndarray * other if result.dtype.kind != "m": # numpy >= 2.1 may not raise a TypeError # and seems to dispatch to others.__rmul__? raise TypeError(f"Cannot multiply with {type(other).__name__}") freq = None if self.freq is not None and not isna(other): freq = self.freq * other if freq.n == 0: # GH#51575 Better to have no freq than an incorrect one freq = None return type(self)._simple_new(result, dtype=result.dtype, freq=freq) if not hasattr(other, "dtype"): # list, tuple other = np.array(other) if len(other) != len(self) and not lib.is_np_dtype(other.dtype, "m"): # Exclude timedelta64 here so we correctly raise TypeError # for that instead of ValueError raise ValueError("Cannot multiply with unequal lengths") if is_object_dtype(other.dtype): # this multiplication will succeed only if all elements of other # are int or float scalars, so we will end up with # timedelta64[ns]-dtyped result arr = self._ndarray result = [arr[n] * other[n] for n in range(len(self))] result = np.array(result) return type(self)._simple_new(result, dtype=result.dtype) # numpy will accept float or int dtype, raise TypeError for others result = self._ndarray * other if result.dtype.kind != "m": # numpy >= 2.1 may not raise a TypeError # and seems to dispatch to others.__rmul__? raise TypeError(f"Cannot multiply with {type(other).__name__}") return type(self)._simple_new(result, dtype=result.dtype) __rmul__ = __mul__ def _scalar_divlike_op(self, other, op): """ Shared logic for __truediv__, __rtruediv__, __floordiv__, __rfloordiv__ with scalar 'other'. """ if isinstance(other, self._recognized_scalars): other = Timedelta(other) # mypy assumes that __new__ returns an instance of the class # github.com/python/mypy/issues/1020 if cast("Timedelta | NaTType", other) is NaT: # specifically timedelta64-NaT res = np.empty(self.shape, dtype=np.float64) res.fill(np.nan) return res # otherwise, dispatch to Timedelta implementation return op(self._ndarray, other) else: # caller is responsible for checking lib.is_scalar(other) # assume other is numeric, otherwise numpy will raise if op in [roperator.rtruediv, roperator.rfloordiv]: raise TypeError( f"Cannot divide {type(other).__name__} by {type(self).__name__}" ) result = op(self._ndarray, other) freq = None if self.freq is not None: # Note: freq gets division, not floor-division, even if op # is floordiv. freq = self.freq / other if freq.nanos == 0 and self.freq.nanos != 0: # e.g. if self.freq is Nano(1) then dividing by 2 # rounds down to zero freq = None return type(self)._simple_new(result, dtype=result.dtype, freq=freq) def _cast_divlike_op(self, other): if not hasattr(other, "dtype"): # e.g. list, tuple other = np.array(other) if len(other) != len(self): raise ValueError("Cannot divide vectors with unequal lengths") return other def _vector_divlike_op(self, other, op) -> np.ndarray | Self: """ Shared logic for __truediv__, __floordiv__, and their reversed versions with timedelta64-dtype ndarray other. """ # Let numpy handle it result = op(self._ndarray, np.asarray(other)) if (is_integer_dtype(other.dtype) or is_float_dtype(other.dtype)) and op in [ operator.truediv, operator.floordiv, ]: return type(self)._simple_new(result, dtype=result.dtype) if op in [operator.floordiv, roperator.rfloordiv]: mask = self.isna() | isna(other) if mask.any(): result = result.astype(np.float64) np.putmask(result, mask, np.nan) return result @unpack_zerodim_and_defer("__truediv__") def __truediv__(self, other): # timedelta / X is well-defined for timedelta-like or numeric X op = operator.truediv if is_scalar(other): return self._scalar_divlike_op(other, op) other = self._cast_divlike_op(other) if ( lib.is_np_dtype(other.dtype, "m") or is_integer_dtype(other.dtype) or is_float_dtype(other.dtype) ): return self._vector_divlike_op(other, op) if is_object_dtype(other.dtype): other = np.asarray(other) if self.ndim > 1: res_cols = [left / right for left, right in zip(self, other)] res_cols2 = [x.reshape(1, -1) for x in res_cols] result = np.concatenate(res_cols2, axis=0) else: result = truediv_object_array(self._ndarray, other) return result else: return NotImplemented @unpack_zerodim_and_defer("__rtruediv__") def __rtruediv__(self, other): # X / timedelta is defined only for timedelta-like X op = roperator.rtruediv if is_scalar(other): return self._scalar_divlike_op(other, op) other = self._cast_divlike_op(other) if lib.is_np_dtype(other.dtype, "m"): return self._vector_divlike_op(other, op) elif is_object_dtype(other.dtype): # Note: unlike in __truediv__, we do not _need_ to do type # inference on the result. It does not raise, a numeric array # is returned. GH#23829 result_list = [other[n] / self[n] for n in range(len(self))] return np.array(result_list) else: return NotImplemented @unpack_zerodim_and_defer("__floordiv__") def __floordiv__(self, other): op = operator.floordiv if is_scalar(other): return self._scalar_divlike_op(other, op) other = self._cast_divlike_op(other) if ( lib.is_np_dtype(other.dtype, "m") or is_integer_dtype(other.dtype) or is_float_dtype(other.dtype) ): return self._vector_divlike_op(other, op) elif is_object_dtype(other.dtype): other = np.asarray(other) if self.ndim > 1: res_cols = [left // right for left, right in zip(self, other)] res_cols2 = [x.reshape(1, -1) for x in res_cols] result = np.concatenate(res_cols2, axis=0) else: result = floordiv_object_array(self._ndarray, other) assert result.dtype == object return result else: return NotImplemented @unpack_zerodim_and_defer("__rfloordiv__") def __rfloordiv__(self, other): op = roperator.rfloordiv if is_scalar(other): return self._scalar_divlike_op(other, op) other = self._cast_divlike_op(other) if lib.is_np_dtype(other.dtype, "m"): return self._vector_divlike_op(other, op) elif is_object_dtype(other.dtype): result_list = [other[n] // self[n] for n in range(len(self))] result = np.array(result_list) return result else: return NotImplemented @unpack_zerodim_and_defer("__mod__") def __mod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) return self - (self // other) * other @unpack_zerodim_and_defer("__rmod__") def __rmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) return other - (other // self) * self @unpack_zerodim_and_defer("__divmod__") def __divmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) res1 = self // other res2 = self - res1 * other return res1, res2 @unpack_zerodim_and_defer("__rdivmod__") def __rdivmod__(self, other): # Note: This is a naive implementation, can likely be optimized if isinstance(other, self._recognized_scalars): other = Timedelta(other) res1 = other // self res2 = other - res1 * self return res1, res2 def __neg__(self) -> TimedeltaArray: freq = None if self.freq is not None: freq = -self.freq return type(self)._simple_new(-self._ndarray, dtype=self.dtype, freq=freq) def __pos__(self) -> TimedeltaArray: return type(self)._simple_new( self._ndarray.copy(), dtype=self.dtype, freq=self.freq ) def __abs__(self) -> TimedeltaArray: # Note: freq is not preserved return type(self)._simple_new(np.abs(self._ndarray), dtype=self.dtype) # ---------------------------------------------------------------- # Conversion Methods - Vectorized analogues of Timedelta methods def total_seconds(self) -> npt.NDArray[np.float64]: """ Return total duration of each element expressed in seconds. This method is available directly on TimedeltaArray, TimedeltaIndex and on Series containing timedelta values under the ``.dt`` namespace. Returns ------- ndarray, Index or Series When the calling object is a TimedeltaArray, the return type is ndarray. When the calling object is a TimedeltaIndex, the return type is an Index with a float64 dtype. When the calling object is a Series, the return type is Series of type `float64` whose index is the same as the original. See Also -------- datetime.timedelta.total_seconds : Standard library version of this method. TimedeltaIndex.components : Return a DataFrame with components of each Timedelta. Examples -------- **Series** >>> s = pd.Series(pd.to_timedelta(np.arange(5), unit='d')) >>> s 0 0 days 1 1 days 2 2 days 3 3 days 4 4 days dtype: timedelta64[ns] >>> s.dt.total_seconds() 0 0.0 1 86400.0 2 172800.0 3 259200.0 4 345600.0 dtype: float64 **TimedeltaIndex** >>> idx = pd.to_timedelta(np.arange(5), unit='d') >>> idx TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) >>> idx.total_seconds() Index([0.0, 86400.0, 172800.0, 259200.0, 345600.0], dtype='float64') """ pps = periods_per_second(self._creso) return self._maybe_mask_results(self.asi8 / pps, fill_value=None) def to_pytimedelta(self) -> npt.NDArray[np.object_]: """ Return an ndarray of datetime.timedelta objects. Returns ------- numpy.ndarray Examples -------- >>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit='D') >>> tdelta_idx TimedeltaIndex(['1 days', '2 days', '3 days'], dtype='timedelta64[ns]', freq=None) >>> tdelta_idx.to_pytimedelta() array([datetime.timedelta(days=1), datetime.timedelta(days=2), datetime.timedelta(days=3)], dtype=object) """ return ints_to_pytimedelta(self._ndarray) days_docstring = textwrap.dedent( """Number of days for each element. Examples -------- For Series: >>> ser = pd.Series(pd.to_timedelta([1, 2, 3], unit='d')) >>> ser 0 1 days 1 2 days 2 3 days dtype: timedelta64[ns] >>> ser.dt.days 0 1 1 2 2 3 dtype: int64 For TimedeltaIndex: >>> tdelta_idx = pd.to_timedelta(["0 days", "10 days", "20 days"]) >>> tdelta_idx TimedeltaIndex(['0 days', '10 days', '20 days'], dtype='timedelta64[ns]', freq=None) >>> tdelta_idx.days Index([0, 10, 20], dtype='int64')""" ) days = _field_accessor("days", "days", days_docstring) seconds_docstring = textwrap.dedent( """Number of seconds (>= 0 and less than 1 day) for each element. Examples -------- For Series: >>> ser = pd.Series(pd.to_timedelta([1, 2, 3], unit='s')) >>> ser 0 0 days 00:00:01 1 0 days 00:00:02 2 0 days 00:00:03 dtype: timedelta64[ns] >>> ser.dt.seconds 0 1 1 2 2 3 dtype: int32 For TimedeltaIndex: >>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit='s') >>> tdelta_idx TimedeltaIndex(['0 days 00:00:01', '0 days 00:00:02', '0 days 00:00:03'], dtype='timedelta64[ns]', freq=None) >>> tdelta_idx.seconds Index([1, 2, 3], dtype='int32')""" ) seconds = _field_accessor( "seconds", "seconds", seconds_docstring, ) microseconds_docstring = textwrap.dedent( """Number of microseconds (>= 0 and less than 1 second) for each element. Examples -------- For Series: >>> ser = pd.Series(pd.to_timedelta([1, 2, 3], unit='us')) >>> ser 0 0 days 00:00:00.000001 1 0 days 00:00:00.000002 2 0 days 00:00:00.000003 dtype: timedelta64[ns] >>> ser.dt.microseconds 0 1 1 2 2 3 dtype: int32 For TimedeltaIndex: >>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit='us') >>> tdelta_idx TimedeltaIndex(['0 days 00:00:00.000001', '0 days 00:00:00.000002', '0 days 00:00:00.000003'], dtype='timedelta64[ns]', freq=None) >>> tdelta_idx.microseconds Index([1, 2, 3], dtype='int32')""" ) microseconds = _field_accessor( "microseconds", "microseconds", microseconds_docstring, ) nanoseconds_docstring = textwrap.dedent( """Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. Examples -------- For Series: >>> ser = pd.Series(pd.to_timedelta([1, 2, 3], unit='ns')) >>> ser 0 0 days 00:00:00.000000001 1 0 days 00:00:00.000000002 2 0 days 00:00:00.000000003 dtype: timedelta64[ns] >>> ser.dt.nanoseconds 0 1 1 2 2 3 dtype: int32 For TimedeltaIndex: >>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit='ns') >>> tdelta_idx TimedeltaIndex(['0 days 00:00:00.000000001', '0 days 00:00:00.000000002', '0 days 00:00:00.000000003'], dtype='timedelta64[ns]', freq=None) >>> tdelta_idx.nanoseconds Index([1, 2, 3], dtype='int32')""" ) nanoseconds = _field_accessor( "nanoseconds", "nanoseconds", nanoseconds_docstring, ) @property def components(self) -> DataFrame: """ Return a DataFrame of the individual resolution components of the Timedeltas. The components (days, hours, minutes seconds, milliseconds, microseconds, nanoseconds) are returned as columns in a DataFrame. Returns ------- DataFrame Examples -------- >>> tdelta_idx = pd.to_timedelta(['1 day 3 min 2 us 42 ns']) >>> tdelta_idx TimedeltaIndex(['1 days 00:03:00.000002042'], dtype='timedelta64[ns]', freq=None) >>> tdelta_idx.components days hours minutes seconds milliseconds microseconds nanoseconds 0 1 0 3 0 0 2 42 """ from pandas import DataFrame columns = [ "days", "hours", "minutes", "seconds", "milliseconds", "microseconds", "nanoseconds", ] hasnans = self._hasna if hasnans: def f(x): if isna(x): return [np.nan] * len(columns) return x.components else: def f(x): return x.components result = DataFrame([f(x) for x in self], columns=columns) if not hasnans: result = result.astype("int64") return result # --------------------------------------------------------------------- # Constructor Helpers def sequence_to_td64ns( data, copy: bool = False, unit=None, errors: DateTimeErrorChoices = "raise", ) -> tuple[np.ndarray, Tick | None]: """ Parameters ---------- data : list-like copy : bool, default False unit : str, optional The timedelta unit to treat integers as multiples of. For numeric data this defaults to ``'ns'``. Must be un-specified if the data contains a str and ``errors=="raise"``. errors : {"raise", "coerce", "ignore"}, default "raise" How to handle elements that cannot be converted to timedelta64[ns]. See ``pandas.to_timedelta`` for details. Returns ------- converted : numpy.ndarray The sequence converted to a numpy array with dtype ``timedelta64[ns]``. inferred_freq : Tick or None The inferred frequency of the sequence. Raises ------ ValueError : Data cannot be converted to timedelta64[ns]. Notes ----- Unlike `pandas.to_timedelta`, if setting ``errors=ignore`` will not cause errors to be ignored; they are caught and subsequently ignored at a higher level. """ assert unit not in ["Y", "y", "M"] # caller is responsible for checking inferred_freq = None if unit is not None: unit = parse_timedelta_unit(unit) data, copy = dtl.ensure_arraylike_for_datetimelike( data, copy, cls_name="TimedeltaArray" ) if isinstance(data, TimedeltaArray): inferred_freq = data.freq # Convert whatever we have into timedelta64[ns] dtype if data.dtype == object or is_string_dtype(data.dtype): # no need to make a copy, need to convert if string-dtyped data = _objects_to_td64ns(data, unit=unit, errors=errors) copy = False elif is_integer_dtype(data.dtype): # treat as multiples of the given unit data, copy_made = _ints_to_td64ns(data, unit=unit) copy = copy and not copy_made elif is_float_dtype(data.dtype): # cast the unit, multiply base/frac separately # to avoid precision issues from float -> int if isinstance(data.dtype, ExtensionDtype): mask = data._mask data = data._data else: mask = np.isnan(data) data = cast_from_unit_vectorized(data, unit or "ns") data[mask] = iNaT data = data.view("m8[ns]") copy = False elif lib.is_np_dtype(data.dtype, "m"): if not is_supported_dtype(data.dtype): # cast to closest supported unit, i.e. s or ns new_dtype = get_supported_dtype(data.dtype) data = astype_overflowsafe(data, dtype=new_dtype, copy=False) copy = False else: # This includes datetime64-dtype, see GH#23539, GH#29794 raise TypeError(f"dtype {data.dtype} cannot be converted to timedelta64[ns]") if not copy: data = np.asarray(data) else: data = np.array(data, copy=copy) assert data.dtype.kind == "m" assert data.dtype != "m8" # i.e. not unit-less return data, inferred_freq def _ints_to_td64ns(data, unit: str = "ns"): """ Convert an ndarray with integer-dtype to timedelta64[ns] dtype, treating the integers as multiples of the given timedelta unit. Parameters ---------- data : numpy.ndarray with integer-dtype unit : str, default "ns" The timedelta unit to treat integers as multiples of. Returns ------- numpy.ndarray : timedelta64[ns] array converted from data bool : whether a copy was made """ copy_made = False unit = unit if unit is not None else "ns" if data.dtype != np.int64: # converting to int64 makes a copy, so we can avoid # re-copying later data = data.astype(np.int64) copy_made = True if unit != "ns": dtype_str = f"timedelta64[{unit}]" data = data.view(dtype_str) data = astype_overflowsafe(data, dtype=TD64NS_DTYPE) # the astype conversion makes a copy, so we can avoid re-copying later copy_made = True else: data = data.view("timedelta64[ns]") return data, copy_made def _objects_to_td64ns(data, unit=None, errors: DateTimeErrorChoices = "raise"): """ Convert a object-dtyped or string-dtyped array into an timedelta64[ns]-dtyped array. Parameters ---------- data : ndarray or Index unit : str, default "ns" The timedelta unit to treat integers as multiples of. Must not be specified if the data contains a str. errors : {"raise", "coerce", "ignore"}, default "raise" How to handle elements that cannot be converted to timedelta64[ns]. See ``pandas.to_timedelta`` for details. Returns ------- numpy.ndarray : timedelta64[ns] array converted from data Raises ------ ValueError : Data cannot be converted to timedelta64[ns]. Notes ----- Unlike `pandas.to_timedelta`, if setting `errors=ignore` will not cause errors to be ignored; they are caught and subsequently ignored at a higher level. """ # coerce Index to np.ndarray, converting string-dtype if necessary values = np.asarray(data, dtype=np.object_) result = array_to_timedelta64(values, unit=unit, errors=errors) return result.view("timedelta64[ns]") def _validate_td64_dtype(dtype) -> DtypeObj: dtype = pandas_dtype(dtype) if dtype == np.dtype("m8"): # no precision disallowed GH#24806 msg = ( "Passing in 'timedelta' dtype with no precision is not allowed. " "Please pass in 'timedelta64[ns]' instead." ) raise ValueError(msg) if not lib.is_np_dtype(dtype, "m"): raise ValueError(f"dtype '{dtype}' is invalid, should be np.timedelta64 dtype") elif not is_supported_dtype(dtype): raise ValueError("Supported timedelta64 resolutions are 's', 'ms', 'us', 'ns'") return dtype