from __future__ import annotations from abc import ( ABC, abstractmethod, ) from collections.abc import ( Hashable, Iterable, Iterator, Sequence, ) from typing import ( TYPE_CHECKING, Any, Literal, cast, final, ) import warnings import matplotlib as mpl import numpy as np from pandas._libs import lib from pandas.errors import AbstractMethodError from pandas.util._decorators import cache_readonly from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import ( is_any_real_numeric_dtype, is_bool, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_number, is_numeric_dtype, ) from pandas.core.dtypes.dtypes import ( CategoricalDtype, ExtensionDtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeIndex, ABCIndex, ABCMultiIndex, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.util.version import Version from pandas.io.formats.printing import pprint_thing from pandas.plotting._matplotlib import tools from pandas.plotting._matplotlib.converter import register_pandas_matplotlib_converters from pandas.plotting._matplotlib.groupby import reconstruct_data_with_by from pandas.plotting._matplotlib.misc import unpack_single_str_list from pandas.plotting._matplotlib.style import get_standard_colors from pandas.plotting._matplotlib.timeseries import ( decorate_axes, format_dateaxis, maybe_convert_index, maybe_resample, use_dynamic_x, ) from pandas.plotting._matplotlib.tools import ( create_subplots, flatten_axes, format_date_labels, get_all_lines, get_xlim, handle_shared_axes, ) if TYPE_CHECKING: from matplotlib.artist import Artist from matplotlib.axes import Axes from matplotlib.axis import Axis from matplotlib.figure import Figure from pandas._typing import ( IndexLabel, NDFrameT, PlottingOrientation, npt, ) from pandas import Series def _color_in_style(style: str) -> bool: """ Check if there is a color letter in the style string. """ from matplotlib.colors import BASE_COLORS return not set(BASE_COLORS).isdisjoint(style) class MPLPlot(ABC): """ Base class for assembling a pandas plot using matplotlib Parameters ---------- data : """ @property @abstractmethod def _kind(self) -> str: """Specify kind str. Must be overridden in child class""" raise NotImplementedError _layout_type = "vertical" _default_rot = 0 @property def orientation(self) -> str | None: return None data: DataFrame def __init__( self, data, kind=None, by: IndexLabel | None = None, subplots: bool | Sequence[Sequence[str]] = False, sharex: bool | None = None, sharey: bool = False, use_index: bool = True, figsize: tuple[float, float] | None = None, grid=None, legend: bool | str = True, rot=None, ax=None, fig=None, title=None, xlim=None, ylim=None, xticks=None, yticks=None, xlabel: Hashable | None = None, ylabel: Hashable | None = None, fontsize: int | None = None, secondary_y: bool | tuple | list | np.ndarray = False, colormap=None, table: bool = False, layout=None, include_bool: bool = False, column: IndexLabel | None = None, *, logx: bool | None | Literal["sym"] = False, logy: bool | None | Literal["sym"] = False, loglog: bool | None | Literal["sym"] = False, mark_right: bool = True, stacked: bool = False, label: Hashable | None = None, style=None, **kwds, ) -> None: import matplotlib.pyplot as plt # if users assign an empty list or tuple, raise `ValueError` # similar to current `df.box` and `df.hist` APIs. if by in ([], ()): raise ValueError("No group keys passed!") self.by = com.maybe_make_list(by) # Assign the rest of columns into self.columns if by is explicitly defined # while column is not, only need `columns` in hist/box plot when it's DF # TODO: Might deprecate `column` argument in future PR (#28373) if isinstance(data, DataFrame): if column: self.columns = com.maybe_make_list(column) elif self.by is None: self.columns = [ col for col in data.columns if is_numeric_dtype(data[col]) ] else: self.columns = [ col for col in data.columns if col not in self.by and is_numeric_dtype(data[col]) ] # For `hist` plot, need to get grouped original data before `self.data` is # updated later if self.by is not None and self._kind == "hist": self._grouped = data.groupby(unpack_single_str_list(self.by)) self.kind = kind self.subplots = type(self)._validate_subplots_kwarg( subplots, data, kind=self._kind ) self.sharex = type(self)._validate_sharex(sharex, ax, by) self.sharey = sharey self.figsize = figsize self.layout = layout self.xticks = xticks self.yticks = yticks self.xlim = xlim self.ylim = ylim self.title = title self.use_index = use_index self.xlabel = xlabel self.ylabel = ylabel self.fontsize = fontsize if rot is not None: self.rot = rot # need to know for format_date_labels since it's rotated to 30 by # default self._rot_set = True else: self._rot_set = False self.rot = self._default_rot if grid is None: grid = False if secondary_y else plt.rcParams["axes.grid"] self.grid = grid self.legend = legend self.legend_handles: list[Artist] = [] self.legend_labels: list[Hashable] = [] self.logx = type(self)._validate_log_kwd("logx", logx) self.logy = type(self)._validate_log_kwd("logy", logy) self.loglog = type(self)._validate_log_kwd("loglog", loglog) self.label = label self.style = style self.mark_right = mark_right self.stacked = stacked # ax may be an Axes object or (if self.subplots) an ndarray of # Axes objects self.ax = ax # TODO: deprecate fig keyword as it is ignored, not passed in tests # as of 2023-11-05 # parse errorbar input if given xerr = kwds.pop("xerr", None) yerr = kwds.pop("yerr", None) nseries = self._get_nseries(data) xerr, data = type(self)._parse_errorbars("xerr", xerr, data, nseries) yerr, data = type(self)._parse_errorbars("yerr", yerr, data, nseries) self.errors = {"xerr": xerr, "yerr": yerr} self.data = data if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, ABCIndex)): secondary_y = [secondary_y] self.secondary_y = secondary_y # ugly TypeError if user passes matplotlib's `cmap` name. # Probably better to accept either. if "cmap" in kwds and colormap: raise TypeError("Only specify one of `cmap` and `colormap`.") if "cmap" in kwds: self.colormap = kwds.pop("cmap") else: self.colormap = colormap self.table = table self.include_bool = include_bool self.kwds = kwds color = kwds.pop("color", lib.no_default) self.color = self._validate_color_args(color, self.colormap) assert "color" not in self.kwds self.data = self._ensure_frame(self.data) @final @staticmethod def _validate_sharex(sharex: bool | None, ax, by) -> bool: if sharex is None: # if by is defined, subplots are used and sharex should be False if ax is None and by is None: # pylint: disable=simplifiable-if-statement sharex = True else: # if we get an axis, the users should do the visibility # setting... sharex = False elif not is_bool(sharex): raise TypeError("sharex must be a bool or None") return bool(sharex) @classmethod def _validate_log_kwd( cls, kwd: str, value: bool | None | Literal["sym"], ) -> bool | None | Literal["sym"]: if ( value is None or isinstance(value, bool) or (isinstance(value, str) and value == "sym") ): return value raise ValueError( f"keyword '{kwd}' should be bool, None, or 'sym', not '{value}'" ) @final @staticmethod def _validate_subplots_kwarg( subplots: bool | Sequence[Sequence[str]], data: Series | DataFrame, kind: str ) -> bool | list[tuple[int, ...]]: """ Validate the subplots parameter - check type and content - check for duplicate columns - check for invalid column names - convert column names into indices - add missing columns in a group of their own See comments in code below for more details. Parameters ---------- subplots : subplots parameters as passed to PlotAccessor Returns ------- validated subplots : a bool or a list of tuples of column indices. Columns in the same tuple will be grouped together in the resulting plot. """ if isinstance(subplots, bool): return subplots elif not isinstance(subplots, Iterable): raise ValueError("subplots should be a bool or an iterable") supported_kinds = ( "line", "bar", "barh", "hist", "kde", "density", "area", "pie", ) if kind not in supported_kinds: raise ValueError( "When subplots is an iterable, kind must be " f"one of {', '.join(supported_kinds)}. Got {kind}." ) if isinstance(data, ABCSeries): raise NotImplementedError( "An iterable subplots for a Series is not supported." ) columns = data.columns if isinstance(columns, ABCMultiIndex): raise NotImplementedError( "An iterable subplots for a DataFrame with a MultiIndex column " "is not supported." ) if columns.nunique() != len(columns): raise NotImplementedError( "An iterable subplots for a DataFrame with non-unique column " "labels is not supported." ) # subplots is a list of tuples where each tuple is a group of # columns to be grouped together (one ax per group). # we consolidate the subplots list such that: # - the tuples contain indices instead of column names # - the columns that aren't yet in the list are added in a group # of their own. # For example with columns from a to g, and # subplots = [(a, c), (b, f, e)], # we end up with [(ai, ci), (bi, fi, ei), (di,), (gi,)] # This way, we can handle self.subplots in a homogeneous manner # later. # TODO: also accept indices instead of just names? out = [] seen_columns: set[Hashable] = set() for group in subplots: if not is_list_like(group): raise ValueError( "When subplots is an iterable, each entry " "should be a list/tuple of column names." ) idx_locs = columns.get_indexer_for(group) if (idx_locs == -1).any(): bad_labels = np.extract(idx_locs == -1, group) raise ValueError( f"Column label(s) {list(bad_labels)} not found in the DataFrame." ) unique_columns = set(group) duplicates = seen_columns.intersection(unique_columns) if duplicates: raise ValueError( "Each column should be in only one subplot. " f"Columns {duplicates} were found in multiple subplots." ) seen_columns = seen_columns.union(unique_columns) out.append(tuple(idx_locs)) unseen_columns = columns.difference(seen_columns) for column in unseen_columns: idx_loc = columns.get_loc(column) out.append((idx_loc,)) return out def _validate_color_args(self, color, colormap): if color is lib.no_default: # It was not provided by the user if "colors" in self.kwds and colormap is not None: warnings.warn( "'color' and 'colormap' cannot be used simultaneously. " "Using 'color'", stacklevel=find_stack_level(), ) return None if self.nseries == 1 and color is not None and not is_list_like(color): # support series.plot(color='green') color = [color] if isinstance(color, tuple) and self.nseries == 1 and len(color) in (3, 4): # support RGB and RGBA tuples in series plot color = [color] if colormap is not None: warnings.warn( "'color' and 'colormap' cannot be used simultaneously. Using 'color'", stacklevel=find_stack_level(), ) if self.style is not None: if is_list_like(self.style): styles = self.style else: styles = [self.style] # need only a single match for s in styles: if _color_in_style(s): raise ValueError( "Cannot pass 'style' string with a color symbol and " "'color' keyword argument. Please use one or the " "other or pass 'style' without a color symbol" ) return color @final @staticmethod def _iter_data( data: DataFrame | dict[Hashable, Series | DataFrame] ) -> Iterator[tuple[Hashable, np.ndarray]]: for col, values in data.items(): # This was originally written to use values.values before EAs # were implemented; adding np.asarray(...) to keep consistent # typing. yield col, np.asarray(values.values) def _get_nseries(self, data: Series | DataFrame) -> int: # When `by` is explicitly assigned, grouped data size will be defined, and # this will determine number of subplots to have, aka `self.nseries` if data.ndim == 1: return 1 elif self.by is not None and self._kind == "hist": return len(self._grouped) elif self.by is not None and self._kind == "box": return len(self.columns) else: return data.shape[1] @final @property def nseries(self) -> int: return self._get_nseries(self.data) @final def draw(self) -> None: self.plt.draw_if_interactive() @final def generate(self) -> None: self._compute_plot_data() fig = self.fig self._make_plot(fig) self._add_table() self._make_legend() self._adorn_subplots(fig) for ax in self.axes: self._post_plot_logic_common(ax) self._post_plot_logic(ax, self.data) @final @staticmethod def _has_plotted_object(ax: Axes) -> bool: """check whether ax has data""" return len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0 @final def _maybe_right_yaxis(self, ax: Axes, axes_num: int) -> Axes: if not self.on_right(axes_num): # secondary axes may be passed via ax kw return self._get_ax_layer(ax) if hasattr(ax, "right_ax"): # if it has right_ax property, ``ax`` must be left axes return ax.right_ax elif hasattr(ax, "left_ax"): # if it has left_ax property, ``ax`` must be right axes return ax else: # otherwise, create twin axes orig_ax, new_ax = ax, ax.twinx() # TODO: use Matplotlib public API when available new_ax._get_lines = orig_ax._get_lines # type: ignore[attr-defined] # TODO #54485 new_ax._get_patches_for_fill = ( # type: ignore[attr-defined] orig_ax._get_patches_for_fill # type: ignore[attr-defined] ) # TODO #54485 orig_ax.right_ax, new_ax.left_ax = ( # type: ignore[attr-defined] new_ax, orig_ax, ) if not self._has_plotted_object(orig_ax): # no data on left y orig_ax.get_yaxis().set_visible(False) if self.logy is True or self.loglog is True: new_ax.set_yscale("log") elif self.logy == "sym" or self.loglog == "sym": new_ax.set_yscale("symlog") return new_ax @final @cache_readonly def fig(self) -> Figure: return self._axes_and_fig[1] @final @cache_readonly # TODO: can we annotate this as both a Sequence[Axes] and ndarray[object]? def axes(self) -> Sequence[Axes]: return self._axes_and_fig[0] @final @cache_readonly def _axes_and_fig(self) -> tuple[Sequence[Axes], Figure]: if self.subplots: naxes = ( self.nseries if isinstance(self.subplots, bool) else len(self.subplots) ) fig, axes = create_subplots( naxes=naxes, sharex=self.sharex, sharey=self.sharey, figsize=self.figsize, ax=self.ax, layout=self.layout, layout_type=self._layout_type, ) elif self.ax is None: fig = self.plt.figure(figsize=self.figsize) axes = fig.add_subplot(111) else: fig = self.ax.get_figure() if self.figsize is not None: fig.set_size_inches(self.figsize) axes = self.ax axes = flatten_axes(axes) if self.logx is True or self.loglog is True: [a.set_xscale("log") for a in axes] elif self.logx == "sym" or self.loglog == "sym": [a.set_xscale("symlog") for a in axes] if self.logy is True or self.loglog is True: [a.set_yscale("log") for a in axes] elif self.logy == "sym" or self.loglog == "sym": [a.set_yscale("symlog") for a in axes] axes_seq = cast(Sequence["Axes"], axes) return axes_seq, fig @property def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not is_list_like(self.ax): # error: "Sequence[Any]" has no attribute "reshape" return self.axes.reshape(*self.layout) # type: ignore[attr-defined] else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y # error: Argument 1 to "len" has incompatible type "Union[bool, # Tuple[Any, ...], List[Any], ndarray[Any, Any]]"; expected "Sized" all_sec = ( is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries # type: ignore[arg-type] ) if sec_true or all_sec: # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0] @final @staticmethod def _convert_to_ndarray(data): # GH31357: categorical columns are processed separately if isinstance(data.dtype, CategoricalDtype): return data # GH32073: cast to float if values contain nulled integers if (is_integer_dtype(data.dtype) or is_float_dtype(data.dtype)) and isinstance( data.dtype, ExtensionDtype ): return data.to_numpy(dtype="float", na_value=np.nan) # GH25587: cast ExtensionArray of pandas (IntegerArray, etc.) to # np.ndarray before plot. if len(data) > 0: return np.asarray(data) return data @final def _ensure_frame(self, data) -> DataFrame: if isinstance(data, ABCSeries): label = self.label if label is None and data.name is None: label = "" if label is None: # We'll end up with columns of [0] instead of [None] data = data.to_frame() else: data = data.to_frame(name=label) elif self._kind in ("hist", "box"): cols = self.columns if self.by is None else self.columns + self.by data = data.loc[:, cols] return data @final def _compute_plot_data(self) -> None: data = self.data # GH15079 reconstruct data if by is defined if self.by is not None: self.subplots = True data = reconstruct_data_with_by(self.data, by=self.by, cols=self.columns) # GH16953, infer_objects is needed as fallback, for ``Series`` # with ``dtype == object`` data = data.infer_objects(copy=False) include_type = [np.number, "datetime", "datetimetz", "timedelta"] # GH23719, allow plotting boolean if self.include_bool is True: include_type.append(np.bool_) # GH22799, exclude datetime-like type for boxplot exclude_type = None if self._kind == "box": # TODO: change after solving issue 27881 include_type = [np.number] exclude_type = ["timedelta"] # GH 18755, include object and category type for scatter plot if self._kind == "scatter": include_type.extend(["object", "category", "string"]) numeric_data = data.select_dtypes(include=include_type, exclude=exclude_type) is_empty = numeric_data.shape[-1] == 0 # no non-numeric frames or series allowed if is_empty: raise TypeError("no numeric data to plot") self.data = numeric_data.apply(type(self)._convert_to_ndarray) def _make_plot(self, fig: Figure) -> None: raise AbstractMethodError(self) @final def _add_table(self) -> None: if self.table is False: return elif self.table is True: data = self.data.transpose() else: data = self.table ax = self._get_ax(0) tools.table(ax, data) @final def _post_plot_logic_common(self, ax: Axes) -> None: """Common post process for each axes""" if self.orientation == "vertical" or self.orientation is None: type(self)._apply_axis_properties( ax.xaxis, rot=self.rot, fontsize=self.fontsize ) type(self)._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): type(self)._apply_axis_properties( ax.right_ax.yaxis, fontsize=self.fontsize ) elif self.orientation == "horizontal": type(self)._apply_axis_properties( ax.yaxis, rot=self.rot, fontsize=self.fontsize ) type(self)._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): type(self)._apply_axis_properties( ax.right_ax.yaxis, fontsize=self.fontsize ) else: # pragma no cover raise ValueError @abstractmethod def _post_plot_logic(self, ax: Axes, data) -> None: """Post process for each axes. Overridden in child classes""" @final def _adorn_subplots(self, fig: Figure) -> None: """Common post process unrelated to data""" if len(self.axes) > 0: all_axes = self._get_subplots(fig) nrows, ncols = self._get_axes_layout(fig) handle_shared_axes( axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey, ) for ax in self.axes: ax = getattr(ax, "right_ax", ax) if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) # GH9093, currently Pandas does not show ylabel, so if users provide # ylabel will set it as ylabel in the plot. if self.ylabel is not None: ax.set_ylabel(pprint_thing(self.ylabel)) ax.grid(self.grid) if self.title: if self.subplots: if is_list_like(self.title): if len(self.title) != self.nseries: raise ValueError( "The length of `title` must equal the number " "of columns if using `title` of type `list` " "and `subplots=True`.\n" f"length of title = {len(self.title)}\n" f"number of columns = {self.nseries}" ) for ax, title in zip(self.axes, self.title): ax.set_title(title) else: fig.suptitle(self.title) else: if is_list_like(self.title): msg = ( "Using `title` of type `list` is not supported " "unless `subplots=True` is passed" ) raise ValueError(msg) self.axes[0].set_title(self.title) @final @staticmethod def _apply_axis_properties( axis: Axis, rot=None, fontsize: int | None = None ) -> None: """ Tick creation within matplotlib is reasonably expensive and is internally deferred until accessed as Ticks are created/destroyed multiple times per draw. It's therefore beneficial for us to avoid accessing unless we will act on the Tick. """ if rot is not None or fontsize is not None: # rot=0 is a valid setting, hence the explicit None check labels = axis.get_majorticklabels() + axis.get_minorticklabels() for label in labels: if rot is not None: label.set_rotation(rot) if fontsize is not None: label.set_fontsize(fontsize) @final @property def legend_title(self) -> str | None: if not isinstance(self.data.columns, ABCMultiIndex): name = self.data.columns.name if name is not None: name = pprint_thing(name) return name else: stringified = map(pprint_thing, self.data.columns.names) return ",".join(stringified) @final def _mark_right_label(self, label: str, index: int) -> str: """ Append ``(right)`` to the label of a line if it's plotted on the right axis. Note that ``(right)`` is only appended when ``subplots=False``. """ if not self.subplots and self.mark_right and self.on_right(index): label += " (right)" return label @final def _append_legend_handles_labels(self, handle: Artist, label: str) -> None: """ Append current handle and label to ``legend_handles`` and ``legend_labels``. These will be used to make the legend. """ self.legend_handles.append(handle) self.legend_labels.append(label) def _make_legend(self) -> None: ax, leg = self._get_ax_legend(self.axes[0]) handles = [] labels = [] title = "" if not self.subplots: if leg is not None: title = leg.get_title().get_text() # Replace leg.legend_handles because it misses marker info if Version(mpl.__version__) < Version("3.7"): handles = leg.legendHandles else: handles = leg.legend_handles labels = [x.get_text() for x in leg.get_texts()] if self.legend: if self.legend == "reverse": handles += reversed(self.legend_handles) labels += reversed(self.legend_labels) else: handles += self.legend_handles labels += self.legend_labels if self.legend_title is not None: title = self.legend_title if len(handles) > 0: ax.legend(handles, labels, loc="best", title=title) elif self.subplots and self.legend: for ax in self.axes: if ax.get_visible(): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "No artists with labels found to put in legend.", UserWarning, ) ax.legend(loc="best") @final @staticmethod def _get_ax_legend(ax: Axes): """ Take in axes and return ax and legend under different scenarios """ leg = ax.get_legend() other_ax = getattr(ax, "left_ax", None) or getattr(ax, "right_ax", None) other_leg = None if other_ax is not None: other_leg = other_ax.get_legend() if leg is None and other_leg is not None: leg = other_leg ax = other_ax return ax, leg @final @cache_readonly def plt(self): import matplotlib.pyplot as plt return plt _need_to_set_index = False @final def _get_xticks(self): index = self.data.index is_datetype = index.inferred_type in ("datetime", "date", "datetime64", "time") # TODO: be stricter about x? x: list[int] | np.ndarray if self.use_index: if isinstance(index, ABCPeriodIndex): # test_mixed_freq_irreg_period x = index.to_timestamp()._mpl_repr() # TODO: why do we need to do to_timestamp() here but not other # places where we call mpl_repr? elif is_any_real_numeric_dtype(index.dtype): # Matplotlib supports numeric values or datetime objects as # xaxis values. Taking LBYL approach here, by the time # matplotlib raises exception when using non numeric/datetime # values for xaxis, several actions are already taken by plt. x = index._mpl_repr() elif isinstance(index, ABCDatetimeIndex) or is_datetype: x = index._mpl_repr() else: self._need_to_set_index = True x = list(range(len(index))) else: x = list(range(len(index))) return x @classmethod @register_pandas_matplotlib_converters def _plot( cls, ax: Axes, x, y: np.ndarray, style=None, is_errorbar: bool = False, **kwds ): mask = isna(y) if mask.any(): y = np.ma.array(y) y = np.ma.masked_where(mask, y) if isinstance(x, ABCIndex): x = x._mpl_repr() if is_errorbar: if "xerr" in kwds: kwds["xerr"] = np.array(kwds.get("xerr")) if "yerr" in kwds: kwds["yerr"] = np.array(kwds.get("yerr")) return ax.errorbar(x, y, **kwds) else: # prevent style kwarg from going to errorbar, where it is unsupported args = (x, y, style) if style is not None else (x, y) return ax.plot(*args, **kwds) def _get_custom_index_name(self): """Specify whether xlabel/ylabel should be used to override index name""" return self.xlabel @final def _get_index_name(self) -> str | None: if isinstance(self.data.index, ABCMultiIndex): name = self.data.index.names if com.any_not_none(*name): name = ",".join([pprint_thing(x) for x in name]) else: name = None else: name = self.data.index.name if name is not None: name = pprint_thing(name) # GH 45145, override the default axis label if one is provided. index_name = self._get_custom_index_name() if index_name is not None: name = pprint_thing(index_name) return name @final @classmethod def _get_ax_layer(cls, ax, primary: bool = True): """get left (primary) or right (secondary) axes""" if primary: return getattr(ax, "left_ax", ax) else: return getattr(ax, "right_ax", ax) @final def _col_idx_to_axis_idx(self, col_idx: int) -> int: """Return the index of the axis where the column at col_idx should be plotted""" if isinstance(self.subplots, list): # Subplots is a list: some columns will be grouped together in the same ax return next( group_idx for (group_idx, group) in enumerate(self.subplots) if col_idx in group ) else: # subplots is True: one ax per column return col_idx @final def _get_ax(self, i: int): # get the twinx ax if appropriate if self.subplots: i = self._col_idx_to_axis_idx(i) ax = self.axes[i] ax = self._maybe_right_yaxis(ax, i) # error: Unsupported target for indexed assignment ("Sequence[Any]") self.axes[i] = ax # type: ignore[index] else: ax = self.axes[0] ax = self._maybe_right_yaxis(ax, i) ax.get_yaxis().set_visible(True) return ax @final def on_right(self, i: int): if isinstance(self.secondary_y, bool): return self.secondary_y if isinstance(self.secondary_y, (tuple, list, np.ndarray, ABCIndex)): return self.data.columns[i] in self.secondary_y @final def _apply_style_colors( self, colors, kwds: dict[str, Any], col_num: int, label: str ): """ Manage style and color based on column number and its label. Returns tuple of appropriate style and kwds which "color" may be added. """ style = None if self.style is not None: if isinstance(self.style, list): try: style = self.style[col_num] except IndexError: pass elif isinstance(self.style, dict): style = self.style.get(label, style) else: style = self.style has_color = "color" in kwds or self.colormap is not None nocolor_style = style is None or not _color_in_style(style) if (has_color or self.subplots) and nocolor_style: if isinstance(colors, dict): kwds["color"] = colors[label] else: kwds["color"] = colors[col_num % len(colors)] return style, kwds def _get_colors( self, num_colors: int | None = None, color_kwds: str = "color", ): if num_colors is None: num_colors = self.nseries if color_kwds == "color": color = self.color else: color = self.kwds.get(color_kwds) return get_standard_colors( num_colors=num_colors, colormap=self.colormap, color=color, ) # TODO: tighter typing for first return? @final @staticmethod def _parse_errorbars( label: str, err, data: NDFrameT, nseries: int ) -> tuple[Any, NDFrameT]: """ Look for error keyword arguments and return the actual errorbar data or return the error DataFrame/dict Error bars can be specified in several ways: Series: the user provides a pandas.Series object of the same length as the data ndarray: provides a np.ndarray of the same length as the data DataFrame/dict: error values are paired with keys matching the key in the plotted DataFrame str: the name of the column within the plotted DataFrame Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a ``N`` length :class:`Series`, a ``2xN`` array should be provided indicating lower and upper (or left and right) errors. For a ``MxN`` :class:`DataFrame`, asymmetrical errors should be in a ``Mx2xN`` array. """ if err is None: return None, data def match_labels(data, e): e = e.reindex(data.index) return e # key-matched DataFrame if isinstance(err, ABCDataFrame): err = match_labels(data, err) # key-matched dict elif isinstance(err, dict): pass # Series of error values elif isinstance(err, ABCSeries): # broadcast error series across data err = match_labels(data, err) err = np.atleast_2d(err) err = np.tile(err, (nseries, 1)) # errors are a column in the dataframe elif isinstance(err, str): evalues = data[err].values data = data[data.columns.drop(err)] err = np.atleast_2d(evalues) err = np.tile(err, (nseries, 1)) elif is_list_like(err): if is_iterator(err): err = np.atleast_2d(list(err)) else: # raw error values err = np.atleast_2d(err) err_shape = err.shape # asymmetrical error bars if isinstance(data, ABCSeries) and err_shape[0] == 2: err = np.expand_dims(err, 0) err_shape = err.shape if err_shape[2] != len(data): raise ValueError( "Asymmetrical error bars should be provided " f"with the shape (2, {len(data)})" ) elif isinstance(data, ABCDataFrame) and err.ndim == 3: if ( (err_shape[0] != nseries) or (err_shape[1] != 2) or (err_shape[2] != len(data)) ): raise ValueError( "Asymmetrical error bars should be provided " f"with the shape ({nseries}, 2, {len(data)})" ) # broadcast errors to each data series if len(err) == 1: err = np.tile(err, (nseries, 1)) elif is_number(err): err = np.tile( [err], (nseries, len(data)), ) else: msg = f"No valid {label} detected" raise ValueError(msg) return err, data @final def _get_errorbars( self, label=None, index=None, xerr: bool = True, yerr: bool = True ) -> dict[str, Any]: errors = {} for kw, flag in zip(["xerr", "yerr"], [xerr, yerr]): if flag: err = self.errors[kw] # user provided label-matched dataframe of errors if isinstance(err, (ABCDataFrame, dict)): if label is not None and label in err.keys(): err = err[label] else: err = None elif index is not None and err is not None: err = err[index] if err is not None: errors[kw] = err return errors @final def _get_subplots(self, fig: Figure): if Version(mpl.__version__) < Version("3.8"): from matplotlib.axes import Subplot as Klass else: from matplotlib.axes import Axes as Klass return [ ax for ax in fig.get_axes() if (isinstance(ax, Klass) and ax.get_subplotspec() is not None) ] @final def _get_axes_layout(self, fig: Figure) -> tuple[int, int]: axes = self._get_subplots(fig) x_set = set() y_set = set() for ax in axes: # check axes coordinates to estimate layout points = ax.get_position().get_points() x_set.add(points[0][0]) y_set.add(points[0][1]) return (len(y_set), len(x_set)) class PlanePlot(MPLPlot, ABC): """ Abstract class for plotting on plane, currently scatter and hexbin. """ _layout_type = "single" def __init__(self, data, x, y, **kwargs) -> None: MPLPlot.__init__(self, data, **kwargs) if x is None or y is None: raise ValueError(self._kind + " requires an x and y column") if is_integer(x) and not self.data.columns._holds_integer(): x = self.data.columns[x] if is_integer(y) and not self.data.columns._holds_integer(): y = self.data.columns[y] self.x = x self.y = y @final def _get_nseries(self, data: Series | DataFrame) -> int: return 1 @final def _post_plot_logic(self, ax: Axes, data) -> None: x, y = self.x, self.y xlabel = self.xlabel if self.xlabel is not None else pprint_thing(x) ylabel = self.ylabel if self.ylabel is not None else pprint_thing(y) # error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible # type "Hashable"; expected "str" ax.set_xlabel(xlabel) # type: ignore[arg-type] ax.set_ylabel(ylabel) # type: ignore[arg-type] @final def _plot_colorbar(self, ax: Axes, *, fig: Figure, **kwds): # Addresses issues #10611 and #10678: # When plotting scatterplots and hexbinplots in IPython # inline backend the colorbar axis height tends not to # exactly match the parent axis height. # The difference is due to small fractional differences # in floating points with similar representation. # To deal with this, this method forces the colorbar # height to take the height of the parent axes. # For a more detailed description of the issue # see the following link: # https://github.com/ipython/ipython/issues/11215 # GH33389, if ax is used multiple times, we should always # use the last one which contains the latest information # about the ax img = ax.collections[-1] return fig.colorbar(img, ax=ax, **kwds) class ScatterPlot(PlanePlot): @property def _kind(self) -> Literal["scatter"]: return "scatter" def __init__( self, data, x, y, s=None, c=None, *, colorbar: bool | lib.NoDefault = lib.no_default, norm=None, **kwargs, ) -> None: if s is None: # hide the matplotlib default for size, in case we want to change # the handling of this argument later s = 20 elif is_hashable(s) and s in data.columns: s = data[s] self.s = s self.colorbar = colorbar self.norm = norm super().__init__(data, x, y, **kwargs) if is_integer(c) and not self.data.columns._holds_integer(): c = self.data.columns[c] self.c = c def _make_plot(self, fig: Figure) -> None: x, y, c, data = self.x, self.y, self.c, self.data ax = self.axes[0] c_is_column = is_hashable(c) and c in self.data.columns color_by_categorical = c_is_column and isinstance( self.data[c].dtype, CategoricalDtype ) color = self.color c_values = self._get_c_values(color, color_by_categorical, c_is_column) norm, cmap = self._get_norm_and_cmap(c_values, color_by_categorical) cb = self._get_colorbar(c_values, c_is_column) if self.legend: label = self.label else: label = None scatter = ax.scatter( data[x].values, data[y].values, c=c_values, label=label, cmap=cmap, norm=norm, s=self.s, **self.kwds, ) if cb: cbar_label = c if c_is_column else "" cbar = self._plot_colorbar(ax, fig=fig, label=cbar_label) if color_by_categorical: n_cats = len(self.data[c].cat.categories) cbar.set_ticks(np.linspace(0.5, n_cats - 0.5, n_cats)) cbar.ax.set_yticklabels(self.data[c].cat.categories) if label is not None: self._append_legend_handles_labels( # error: Argument 2 to "_append_legend_handles_labels" of # "MPLPlot" has incompatible type "Hashable"; expected "str" scatter, label, # type: ignore[arg-type] ) errors_x = self._get_errorbars(label=x, index=0, yerr=False) errors_y = self._get_errorbars(label=y, index=0, xerr=False) if len(errors_x) > 0 or len(errors_y) > 0: err_kwds = dict(errors_x, **errors_y) err_kwds["ecolor"] = scatter.get_facecolor()[0] ax.errorbar(data[x].values, data[y].values, linestyle="none", **err_kwds) def _get_c_values(self, color, color_by_categorical: bool, c_is_column: bool): c = self.c if c is not None and color is not None: raise TypeError("Specify exactly one of `c` and `color`") if c is None and color is None: c_values = self.plt.rcParams["patch.facecolor"] elif color is not None: c_values = color elif color_by_categorical: c_values = self.data[c].cat.codes elif c_is_column: c_values = self.data[c].values else: c_values = c return c_values def _get_norm_and_cmap(self, c_values, color_by_categorical: bool): c = self.c if self.colormap is not None: cmap = mpl.colormaps.get_cmap(self.colormap) # cmap is only used if c_values are integers, otherwise UserWarning. # GH-53908: additionally call isinstance() because is_integer_dtype # returns True for "b" (meaning "blue" and not int8 in this context) elif not isinstance(c_values, str) and is_integer_dtype(c_values): # pandas uses colormap, matplotlib uses cmap. cmap = mpl.colormaps["Greys"] else: cmap = None if color_by_categorical and cmap is not None: from matplotlib import colors n_cats = len(self.data[c].cat.categories) cmap = colors.ListedColormap([cmap(i) for i in range(cmap.N)]) bounds = np.linspace(0, n_cats, n_cats + 1) norm = colors.BoundaryNorm(bounds, cmap.N) # TODO: warn that we are ignoring self.norm if user specified it? # Doesn't happen in any tests 2023-11-09 else: norm = self.norm return norm, cmap def _get_colorbar(self, c_values, c_is_column: bool) -> bool: # plot colorbar if # 1. colormap is assigned, and # 2.`c` is a column containing only numeric values plot_colorbar = self.colormap or c_is_column cb = self.colorbar if cb is lib.no_default: return is_numeric_dtype(c_values) and plot_colorbar return cb class HexBinPlot(PlanePlot): @property def _kind(self) -> Literal["hexbin"]: return "hexbin" def __init__(self, data, x, y, C=None, *, colorbar: bool = True, **kwargs) -> None: super().__init__(data, x, y, **kwargs) if is_integer(C) and not self.data.columns._holds_integer(): C = self.data.columns[C] self.C = C self.colorbar = colorbar # Scatter plot allows to plot objects data if len(self.data[self.x]._get_numeric_data()) == 0: raise ValueError(self._kind + " requires x column to be numeric") if len(self.data[self.y]._get_numeric_data()) == 0: raise ValueError(self._kind + " requires y column to be numeric") def _make_plot(self, fig: Figure) -> None: x, y, data, C = self.x, self.y, self.data, self.C ax = self.axes[0] # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or "BuGn" cmap = mpl.colormaps.get_cmap(cmap) cb = self.colorbar if C is None: c_values = None else: c_values = data[C].values ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds) if cb: self._plot_colorbar(ax, fig=fig) def _make_legend(self) -> None: pass class LinePlot(MPLPlot): _default_rot = 0 @property def orientation(self) -> PlottingOrientation: return "vertical" @property def _kind(self) -> Literal["line", "area", "hist", "kde", "box"]: return "line" def __init__(self, data, **kwargs) -> None: from pandas.plotting import plot_params MPLPlot.__init__(self, data, **kwargs) if self.stacked: self.data = self.data.fillna(value=0) self.x_compat = plot_params["x_compat"] if "x_compat" in self.kwds: self.x_compat = bool(self.kwds.pop("x_compat")) @final def _is_ts_plot(self) -> bool: # this is slightly deceptive return not self.x_compat and self.use_index and self._use_dynamic_x() @final def _use_dynamic_x(self) -> bool: return use_dynamic_x(self._get_ax(0), self.data) def _make_plot(self, fig: Figure) -> None: if self._is_ts_plot(): data = maybe_convert_index(self._get_ax(0), self.data) x = data.index # dummy, not used plotf = self._ts_plot it = data.items() else: x = self._get_xticks() # error: Incompatible types in assignment (expression has type # "Callable[[Any, Any, Any, Any, Any, Any, KwArg(Any)], Any]", variable has # type "Callable[[Any, Any, Any, Any, KwArg(Any)], Any]") plotf = self._plot # type: ignore[assignment] # error: Incompatible types in assignment (expression has type # "Iterator[tuple[Hashable, ndarray[Any, Any]]]", variable has # type "Iterable[tuple[Hashable, Series]]") it = self._iter_data(data=self.data) # type: ignore[assignment] stacking_id = self._get_stacking_id() is_errorbar = com.any_not_none(*self.errors.values()) colors = self._get_colors() for i, (label, y) in enumerate(it): ax = self._get_ax(i) kwds = self.kwds.copy() if self.color is not None: kwds["color"] = self.color style, kwds = self._apply_style_colors( colors, kwds, i, # error: Argument 4 to "_apply_style_colors" of "MPLPlot" has # incompatible type "Hashable"; expected "str" label, # type: ignore[arg-type] ) errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = pprint_thing(label) label = self._mark_right_label(label, index=i) kwds["label"] = label newlines = plotf( ax, x, y, style=style, column_num=i, stacking_id=stacking_id, is_errorbar=is_errorbar, **kwds, ) self._append_legend_handles_labels(newlines[0], label) if self._is_ts_plot(): # reset of xlim should be used for ts data # TODO: GH28021, should find a way to change view limit on xaxis lines = get_all_lines(ax) left, right = get_xlim(lines) ax.set_xlim(left, right) # error: Signature of "_plot" incompatible with supertype "MPLPlot" @classmethod def _plot( # type: ignore[override] cls, ax: Axes, x, y: np.ndarray, style=None, column_num=None, stacking_id=None, **kwds, ): # column_num is used to get the target column from plotf in line and # area plots if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(y)) y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"]) lines = MPLPlot._plot(ax, x, y_values, style=style, **kwds) cls._update_stacker(ax, stacking_id, y) return lines @final def _ts_plot(self, ax: Axes, x, data: Series, style=None, **kwds): # accept x to be consistent with normal plot func, # x is not passed to tsplot as it uses data.index as x coordinate # column_num must be in kwds for stacking purpose freq, data = maybe_resample(data, ax, kwds) # Set ax with freq info decorate_axes(ax, freq) # digging deeper if hasattr(ax, "left_ax"): decorate_axes(ax.left_ax, freq) if hasattr(ax, "right_ax"): decorate_axes(ax.right_ax, freq) # TODO #54485 ax._plot_data.append((data, self._kind, kwds)) # type: ignore[attr-defined] lines = self._plot(ax, data.index, np.asarray(data.values), style=style, **kwds) # set date formatter, locators and rescale limits # TODO #54485 format_dateaxis(ax, ax.freq, data.index) # type: ignore[arg-type, attr-defined] return lines @final def _get_stacking_id(self) -> int | None: if self.stacked: return id(self.data) else: return None @final @classmethod def _initialize_stacker(cls, ax: Axes, stacking_id, n: int) -> None: if stacking_id is None: return if not hasattr(ax, "_stacker_pos_prior"): # TODO #54485 ax._stacker_pos_prior = {} # type: ignore[attr-defined] if not hasattr(ax, "_stacker_neg_prior"): # TODO #54485 ax._stacker_neg_prior = {} # type: ignore[attr-defined] # TODO #54485 ax._stacker_pos_prior[stacking_id] = np.zeros(n) # type: ignore[attr-defined] # TODO #54485 ax._stacker_neg_prior[stacking_id] = np.zeros(n) # type: ignore[attr-defined] @final @classmethod def _get_stacked_values( cls, ax: Axes, stacking_id: int | None, values: np.ndarray, label ) -> np.ndarray: if stacking_id is None: return values if not hasattr(ax, "_stacker_pos_prior"): # stacker may not be initialized for subplots cls._initialize_stacker(ax, stacking_id, len(values)) if (values >= 0).all(): # TODO #54485 return ( ax._stacker_pos_prior[stacking_id] # type: ignore[attr-defined] + values ) elif (values <= 0).all(): # TODO #54485 return ( ax._stacker_neg_prior[stacking_id] # type: ignore[attr-defined] + values ) raise ValueError( "When stacked is True, each column must be either " "all positive or all negative. " f"Column '{label}' contains both positive and negative values" ) @final @classmethod def _update_stacker(cls, ax: Axes, stacking_id: int | None, values) -> None: if stacking_id is None: return if (values >= 0).all(): # TODO #54485 ax._stacker_pos_prior[stacking_id] += values # type: ignore[attr-defined] elif (values <= 0).all(): # TODO #54485 ax._stacker_neg_prior[stacking_id] += values # type: ignore[attr-defined] def _post_plot_logic(self, ax: Axes, data) -> None: from matplotlib.ticker import FixedLocator def get_label(i): if is_float(i) and i.is_integer(): i = int(i) try: return pprint_thing(data.index[i]) except Exception: return "" if self._need_to_set_index: xticks = ax.get_xticks() xticklabels = [get_label(x) for x in xticks] # error: Argument 1 to "FixedLocator" has incompatible type "ndarray[Any, # Any]"; expected "Sequence[float]" ax.xaxis.set_major_locator(FixedLocator(xticks)) # type: ignore[arg-type] ax.set_xticklabels(xticklabels) # If the index is an irregular time series, then by default # we rotate the tick labels. The exception is if there are # subplots which don't share their x-axes, in which we case # we don't rotate the ticklabels as by default the subplots # would be too close together. condition = ( not self._use_dynamic_x() and (data.index._is_all_dates and self.use_index) and (not self.subplots or (self.subplots and self.sharex)) ) index_name = self._get_index_name() if condition: # irregular TS rotated 30 deg. by default # probably a better place to check / set this. if not self._rot_set: self.rot = 30 format_date_labels(ax, rot=self.rot) if index_name is not None and self.use_index: ax.set_xlabel(index_name) class AreaPlot(LinePlot): @property def _kind(self) -> Literal["area"]: return "area" def __init__(self, data, **kwargs) -> None: kwargs.setdefault("stacked", True) with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "Downcasting object dtype arrays", category=FutureWarning, ) data = data.fillna(value=0) LinePlot.__init__(self, data, **kwargs) if not self.stacked: # use smaller alpha to distinguish overlap self.kwds.setdefault("alpha", 0.5) if self.logy or self.loglog: raise ValueError("Log-y scales are not supported in area plot") # error: Signature of "_plot" incompatible with supertype "MPLPlot" @classmethod def _plot( # type: ignore[override] cls, ax: Axes, x, y: np.ndarray, style=None, column_num=None, stacking_id=None, is_errorbar: bool = False, **kwds, ): if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(y)) y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"]) # need to remove label, because subplots uses mpl legend as it is line_kwds = kwds.copy() line_kwds.pop("label") lines = MPLPlot._plot(ax, x, y_values, style=style, **line_kwds) # get data from the line to get coordinates for fill_between xdata, y_values = lines[0].get_data(orig=False) # unable to use ``_get_stacked_values`` here to get starting point if stacking_id is None: start = np.zeros(len(y)) elif (y >= 0).all(): # TODO #54485 start = ax._stacker_pos_prior[stacking_id] # type: ignore[attr-defined] elif (y <= 0).all(): # TODO #54485 start = ax._stacker_neg_prior[stacking_id] # type: ignore[attr-defined] else: start = np.zeros(len(y)) if "color" not in kwds: kwds["color"] = lines[0].get_color() rect = ax.fill_between(xdata, start, y_values, **kwds) cls._update_stacker(ax, stacking_id, y) # LinePlot expects list of artists res = [rect] return res def _post_plot_logic(self, ax: Axes, data) -> None: LinePlot._post_plot_logic(self, ax, data) is_shared_y = len(list(ax.get_shared_y_axes())) > 0 # do not override the default axis behaviour in case of shared y axes if self.ylim is None and not is_shared_y: if (data >= 0).all().all(): ax.set_ylim(0, None) elif (data <= 0).all().all(): ax.set_ylim(None, 0) class BarPlot(MPLPlot): @property def _kind(self) -> Literal["bar", "barh"]: return "bar" _default_rot = 90 @property def orientation(self) -> PlottingOrientation: return "vertical" def __init__( self, data, *, align="center", bottom=0, left=0, width=0.5, position=0.5, log=False, **kwargs, ) -> None: # we have to treat a series differently than a # 1-column DataFrame w.r.t. color handling self._is_series = isinstance(data, ABCSeries) self.bar_width = width self._align = align self._position = position self.tick_pos = np.arange(len(data)) if is_list_like(bottom): bottom = np.array(bottom) if is_list_like(left): left = np.array(left) self.bottom = bottom self.left = left self.log = log MPLPlot.__init__(self, data, **kwargs) @cache_readonly def ax_pos(self) -> np.ndarray: return self.tick_pos - self.tickoffset @cache_readonly def tickoffset(self): if self.stacked or self.subplots: return self.bar_width * self._position elif self._align == "edge": w = self.bar_width / self.nseries return self.bar_width * (self._position - 0.5) + w * 0.5 else: return self.bar_width * self._position @cache_readonly def lim_offset(self): if self.stacked or self.subplots: if self._align == "edge": return self.bar_width / 2 else: return 0 elif self._align == "edge": w = self.bar_width / self.nseries return w * 0.5 else: return 0 # error: Signature of "_plot" incompatible with supertype "MPLPlot" @classmethod def _plot( # type: ignore[override] cls, ax: Axes, x, y: np.ndarray, w, start: int | npt.NDArray[np.intp] = 0, log: bool = False, **kwds, ): return ax.bar(x, y, w, bottom=start, log=log, **kwds) @property def _start_base(self): return self.bottom def _make_plot(self, fig: Figure) -> None: colors = self._get_colors() ncolors = len(colors) pos_prior = neg_prior = np.zeros(len(self.data)) K = self.nseries data = self.data.fillna(0) for i, (label, y) in enumerate(self._iter_data(data=data)): ax = self._get_ax(i) kwds = self.kwds.copy() if self._is_series: kwds["color"] = colors elif isinstance(colors, dict): kwds["color"] = colors[label] else: kwds["color"] = colors[i % ncolors] errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = pprint_thing(label) label = self._mark_right_label(label, index=i) if (("yerr" in kwds) or ("xerr" in kwds)) and (kwds.get("ecolor") is None): kwds["ecolor"] = mpl.rcParams["xtick.color"] start = 0 if self.log and (y >= 1).all(): start = 1 start = start + self._start_base kwds["align"] = self._align if self.subplots: w = self.bar_width / 2 rect = self._plot( ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, log=self.log, **kwds, ) ax.set_title(label) elif self.stacked: mask = y > 0 start = np.where(mask, pos_prior, neg_prior) + self._start_base w = self.bar_width / 2 rect = self._plot( ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, log=self.log, **kwds, ) pos_prior = pos_prior + np.where(mask, y, 0) neg_prior = neg_prior + np.where(mask, 0, y) else: w = self.bar_width / K rect = self._plot( ax, self.ax_pos + (i + 0.5) * w, y, w, start=start, label=label, log=self.log, **kwds, ) self._append_legend_handles_labels(rect, label) def _post_plot_logic(self, ax: Axes, data) -> None: if self.use_index: str_index = [pprint_thing(key) for key in data.index] else: str_index = [pprint_thing(key) for key in range(data.shape[0])] s_edge = self.ax_pos[0] - 0.25 + self.lim_offset e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset self._decorate_ticks(ax, self._get_index_name(), str_index, s_edge, e_edge) def _decorate_ticks( self, ax: Axes, name: str | None, ticklabels: list[str], start_edge: float, end_edge: float, ) -> None: ax.set_xlim((start_edge, end_edge)) if self.xticks is not None: ax.set_xticks(np.array(self.xticks)) else: ax.set_xticks(self.tick_pos) ax.set_xticklabels(ticklabels) if name is not None and self.use_index: ax.set_xlabel(name) class BarhPlot(BarPlot): @property def _kind(self) -> Literal["barh"]: return "barh" _default_rot = 0 @property def orientation(self) -> Literal["horizontal"]: return "horizontal" @property def _start_base(self): return self.left # error: Signature of "_plot" incompatible with supertype "MPLPlot" @classmethod def _plot( # type: ignore[override] cls, ax: Axes, x, y: np.ndarray, w, start: int | npt.NDArray[np.intp] = 0, log: bool = False, **kwds, ): return ax.barh(x, y, w, left=start, log=log, **kwds) def _get_custom_index_name(self): return self.ylabel def _decorate_ticks( self, ax: Axes, name: str | None, ticklabels: list[str], start_edge: float, end_edge: float, ) -> None: # horizontal bars ax.set_ylim((start_edge, end_edge)) ax.set_yticks(self.tick_pos) ax.set_yticklabels(ticklabels) if name is not None and self.use_index: ax.set_ylabel(name) # error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible type # "Hashable | None"; expected "str" ax.set_xlabel(self.xlabel) # type: ignore[arg-type] class PiePlot(MPLPlot): @property def _kind(self) -> Literal["pie"]: return "pie" _layout_type = "horizontal" def __init__(self, data, kind=None, **kwargs) -> None: data = data.fillna(value=0) if (data < 0).any().any(): raise ValueError(f"{self._kind} plot doesn't allow negative values") MPLPlot.__init__(self, data, kind=kind, **kwargs) @classmethod def _validate_log_kwd( cls, kwd: str, value: bool | None | Literal["sym"], ) -> bool | None | Literal["sym"]: super()._validate_log_kwd(kwd=kwd, value=value) if value is not False: warnings.warn( f"PiePlot ignores the '{kwd}' keyword", UserWarning, stacklevel=find_stack_level(), ) return False def _validate_color_args(self, color, colormap) -> None: # TODO: warn if color is passed and ignored? return None def _make_plot(self, fig: Figure) -> None: colors = self._get_colors(num_colors=len(self.data), color_kwds="colors") self.kwds.setdefault("colors", colors) for i, (label, y) in enumerate(self._iter_data(data=self.data)): ax = self._get_ax(i) if label is not None: label = pprint_thing(label) ax.set_ylabel(label) kwds = self.kwds.copy() def blank_labeler(label, value): if value == 0: return "" else: return label idx = [pprint_thing(v) for v in self.data.index] labels = kwds.pop("labels", idx) # labels is used for each wedge's labels # Blank out labels for values of 0 so they don't overlap # with nonzero wedges if labels is not None: blabels = [blank_labeler(left, value) for left, value in zip(labels, y)] else: blabels = None results = ax.pie(y, labels=blabels, **kwds) if kwds.get("autopct", None) is not None: patches, texts, autotexts = results else: patches, texts = results autotexts = [] if self.fontsize is not None: for t in texts + autotexts: t.set_fontsize(self.fontsize) # leglabels is used for legend labels leglabels = labels if labels is not None else idx for _patch, _leglabel in zip(patches, leglabels): self._append_legend_handles_labels(_patch, _leglabel) def _post_plot_logic(self, ax: Axes, data) -> None: pass