
Program Name goes here

Link to github Repository: (N/A)

Links to trello board / project management
tools:https://trello.com/invite/b/5QYamIel/ATTIc6979de20083e48b037
a0b80196811e3B885A198/91896-assesment

You MUST provide evidence showing how the problem has been
decomposed, how the components have been developed and trialled,
and of how they have been assembled and tested to create a final,
working outcome.

https://trello.com/invite/b/5QYamIel/ATTIc6979de20083e48b037a0b80196811e3B885A198/91896-assesment
https://trello.com/invite/b/5QYamIel/ATTIc6979de20083e48b037a0b80196811e3B885A198/91896-assesment

Relevant Implications
The functionality of the burger ordering code refers to how well it performs its
intended tasks, providing a smooth and guided process for users to make selections
and complete their order. The code addresses functionality by ensuring each step
such as choosing burger sizes, toppings, and payment methods is clear and easy to
follow. Input validation ensures that users make correct choices, preventing mistakes
like invalid sizes or improperly formatted phone numbers. Additionally, the code
effectively calculates and communicates costs, offering a seamless and error-free
ordering experience from start to finish.

Functionality is how something works and the specific tasks it can perform, such as
features in a program, tool, or system that make it useful for users. It's essentially
what something is capable of doing based on its design.

Additionally,

Relevant Implications
The code’s aesthetics are highlighted by its clean, organized look with
well-formatted menus and engaging images. This design creates a
visually appealing and user-friendly burger ordering interface. Rather
than using typical loading bars, the creative images add a fun and
unique touch, making the interface more enjoyable and attractive to
use. This is important to my code as it can appeal to people of all
ages and all over the world, as I have not put any images that will
offend anybody.

The code’s usability is shown through its clear messages, effective error recovery, and easy
navigation. It lets users customize their burger orders, select payment options, and review their
choices. The straightforward design ensures a smooth, hassle-free experience for everyone. This
is important as without error recovery the website would be unusable and users would not be able
to effectively order a burger.

Relevant implications evidence Topping choice

Aesthetics

Component 1 (Trello screenshot) "Added delivery or pick-up options and
fixed errors."

Introduction completed

Component final (Trello screenshot)

I ensured that my program adhered to
my original plan, incorporating several,
though not all, of the toppings listed on
my Trello board.

Error recovery system 🔨

Fixed human errors such as typos and
accidental inputs to provide users with a
more seamless and smooth experience in my
burger selection program

Error recovery system 🔨

Testing boundaries (0,1) and
(18,19)

Not_blank function working

Making things more efficient (1) 🔍
With dictionary

Without dictionary

Version 1 pizza version

Version 2

By converting my burger selection tool into a dictionary,
I've significantly reduced the amount of code needed. This
not only makes the code more efficient but also improves
the program's readability and ease of navigation.

Making things more efficient (2)

print(“Improved the burger logo end
loading screen efficiency by removing

unnecessary code”)

Dose the same thing
just more efficient!

Pandas!

print(“Using pandas in Python makes working
with data faster and easier. It provides a special
table-like structure called a DataFrame that
handles large amounts of data more efficiently.
With pandas, my program can quickly sort, and
analyze the data, as well as create charts like
my menu. It simplifies many tasks that would
be more complicated and time-consuming with
just basic Python code such as print.”)

Before (pizza version)

With pandas

Using `pandas` will make it
easier to add new features
to my pizza program, like
sales. It would be able to
handle new data smoothly
and helps analyze and
manage it efficiently.
Compared to the old
version

Testing and additions (1)
Resolved issues
in the cash and
credit payment

system.

Added a price total receipt
feature at the end of the
order process with name
phone number and address

Added a burger
history option to
the start of the

program

Testing and additions
(2)

Revamped the
final order
review menu and
implemented an
error recovery
system.

Leaving a review

Error recovery

More testing and additions

Adding this line of code enhances user
guidance by clearly listing all possible input

options, making it easier for users to
understand what they can enter.

Before

after

Additions 🔧

Enhanced the code
by incorporating
additional detail

options and
included a burger

image at the
beginning

Testing

https://youtu.be/1ZH-gCTfhvM
#Youtube link for full code run test#

Testing that all
toppings work

https://youtu.be/1ZH-gCTfhvM

Added to ensure users
know that 'yes' or 'no'
are valid responses.

more options have been
added to further reduce

the likelihood of
mistakes

User guidance

Changed to shorter answer more
efficient

Other comments

Single-letter responses are
allowed as it is more efficient

This allows the code
to interpret the

input as numerical
values rather than

symbols, enabling it
to correctly

recognize numbers
ranging from 1 to

17.

Trello functions

Component 1 - Test Plan (?and screenshot)
Test Case Expected Values

Pick up or p - string checker Our address is:
565 Maunganui Road, Mount
Maunganui 3116. See you
soon!

Delivery or d There will be a 10$ surcharge
for delivery
Enter your name:

reajsd Enter a valid response from
['delivery', 'pick up']
Would you like to order
delivery or pick up:

Component 2 - Test Plan (?and screenshot)
Test Case Expected Values

Confirm order: yes or y Would you like to confirm your order?
(yes or no): yes

Choose a payment method (cash or
credit):

Confirm order: no or n Would you like to confirm your order?
(yes or no): no

Code restarts

Confirm order: asfda enter a valid response from
['y', 'n']

Component 3 - Test Plan (?and screenshot)
Test Case Expected Values

 not_blank(question): Ensures that the user input is not
blank. Prompts repeatedly until a
non-blank response is provided.

Blank Enter a valid response from
(valid_answer)

y,n,yes,no Prints next part of code

Component 4 - Test Plan (?and screenshot)
Test Case Expected Values

Num_checker Checks if the input is a number instead
of a symbol

Number in non number question Enter a valid response from
(valid_answer)

P,d,pick up, delivery Prints next part of code

Component
5 - Test Plan
(?and
screenshot)

Test Case Expected Values

String checker = Yes no checker Checks for yes or no or y or n

Yes or no Moves to next part of code

Something other then yes or no Re asks question and gets new
answer

Component 6 - Test Plan (?and screenshot)
Test cash credit Expected Values

cash_credit(question): Prompts the user to choose
between "cash" or "credit" as a
payment method. Allows for
abbreviations (e.g., 'c' for cash).

Cash or credit Will register if user has chosen to pay
with cash or credit

Something other then cash or credit Will ask them to put cash or credit

Component 7 - Test Plan (?and screenshot)
Test get size Expected Values

get_size_cost(size_option,
size_prices):

Prompts the user to choose a pizza size and
returns the selected size along with its
corresponding cost.

Inputs l,m,s Adds the size of the pizza to the total

Input other the l,m,s Asks you to put a valid answer

Component 8 - Test Plan (?and screenshot)
Test Expected Values

int_checker(question, low, high) Prompts the user to enter an integer within a
specified range (low to high). Returns the
integer if valid or 'd' if the user indicates they
are done.

Invalid input - e.g - letter, or numbers
outside of 1-17

Will ask you to put a valid answer

Between 1-17 (valid input
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17)

Will move onto the next part of the
code

Version Control Evidence

Testing file for
testing different
things such as
cash credit
options menu and
topping
calculator

print(“I kept things organized by creating separate
main files for each version to manage major changes and
differences effectively. This approach allowed me to
keep the project structured, making it easier to test
and fix issues. Additionally, it ensured that I could
maintain and reference older versions without impacting
the development of newer ones, leading to a more
efficient workflow.”)

Other random additions

Style Errors
Error document link

Fixed Error document
link

Added more
options

https://docs.google.com/document/d/1Qw-wmNzEbtiDiolkUeovEEIuICCWC_PVnyRMH4MLi6k/edit?usp=sharing
https://docs.google.com/document/d/1ISTOJybW-XQ_JwCIXoZkVHncr7dMn5nb4a_MXKHS53A/edit?usp=sharing
https://docs.google.com/document/d/1ISTOJybW-XQ_JwCIXoZkVHncr7dMn5nb4a_MXKHS53A/edit?usp=sharing

Burger additions

Discusses how the information from planning, testing and trialling of
components assisted in the development of a high-quality outcome: The

The information gathered during planning, testing, and trialling was crucial in developing
a high-quality pizza selection tool.

Planning Trello provided a structured approach to the project, allowing for a clear
understanding of the requirements. The organization facilitated by Trello made the project
more manageable, enabling effective time management and contributing to the overall quality
of the final program. By breaking down tasks into manageable components helped me stay
focused and on track, ultimately leading to a more refined and comprehensive tool.

Testing played a vital role in identifying potential issues and areas for improvement.
Through rigorous testing, I was able to pinpoint bugs, usability problems, and other
challenges that could hinder the user experience. Each identified issue was addressed,
leading to iterative improvements in the program's functionality and stability. Testing
also revealed which features were most effective and which needed refinement, ensuring that
the final product met the users' needs and expectations.

Discusses how the information from planning, testing and trialling of
components assisted in the development of a high-quality outcome: The

Trialling allowed for real-world application and small adjustments that fine-tuned the
program's performance. By trialling the tool in different scenarios, I was able to make
minor tweaks that enhanced its usability and efficiency. This approach ensured that the
final product was not only functional but also smooth for the user.

Another key aspect of the development process was

gathering feedback from others who tested the program. This input provided valuable
insights that I might have overlooked. By incorporating feedback from users with different
perspectives, I was able to make further improvements, resulting in a program that was both
user-friendly and robust. The process of assessing, refining, and adjusting based on
testing and trialling ultimately led to a well-developed, effective program that had
significantly evolved since the first version.

