""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ from __future__ import annotations import collections from collections import abc from collections.abc import ( Hashable, Iterable, Iterator, Mapping, Sequence, ) import functools from inspect import signature from io import StringIO import itertools import operator import sys from textwrap import dedent from typing import ( TYPE_CHECKING, Any, Callable, Literal, cast, overload, ) import warnings import numpy as np from numpy import ma from pandas._config import ( get_option, using_copy_on_write, warn_copy_on_write, ) from pandas._config.config import _get_option from pandas._libs import ( algos as libalgos, lib, properties, ) from pandas._libs.hashtable import duplicated from pandas._libs.lib import is_range_indexer from pandas.compat import PYPY from pandas.compat._constants import REF_COUNT from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.errors import ( ChainedAssignmentError, InvalidIndexError, _chained_assignment_method_msg, _chained_assignment_msg, _chained_assignment_warning_method_msg, _chained_assignment_warning_msg, ) from pandas.util._decorators import ( Appender, Substitution, deprecate_nonkeyword_arguments, doc, ) from pandas.util._exceptions import ( find_stack_level, rewrite_warning, ) from pandas.util._validators import ( validate_ascending, validate_bool_kwarg, validate_percentile, ) from pandas.core.dtypes.cast import ( LossySetitemError, can_hold_element, construct_1d_arraylike_from_scalar, construct_2d_arraylike_from_scalar, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_box_native, maybe_downcast_to_dtype, ) from pandas.core.dtypes.common import ( infer_dtype_from_object, is_1d_only_ea_dtype, is_array_like, is_bool_dtype, is_dataclass, is_dict_like, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_scalar, is_sequence, needs_i8_conversion, pandas_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.dtypes import ( ArrowDtype, BaseMaskedDtype, ExtensionDtype, ) from pandas.core.dtypes.missing import ( isna, notna, ) from pandas.core import ( algorithms, common as com, nanops, ops, roperator, ) from pandas.core.accessor import CachedAccessor from pandas.core.apply import reconstruct_and_relabel_result from pandas.core.array_algos.take import take_2d_multi from pandas.core.arraylike import OpsMixin from pandas.core.arrays import ( BaseMaskedArray, DatetimeArray, ExtensionArray, PeriodArray, TimedeltaArray, ) from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.construction import ( ensure_wrapped_if_datetimelike, sanitize_array, sanitize_masked_array, ) from pandas.core.generic import ( NDFrame, make_doc, ) from pandas.core.indexers import check_key_length from pandas.core.indexes.api import ( DatetimeIndex, Index, PeriodIndex, default_index, ensure_index, ensure_index_from_sequences, ) from pandas.core.indexes.multi import ( MultiIndex, maybe_droplevels, ) from pandas.core.indexing import ( check_bool_indexer, check_dict_or_set_indexers, ) from pandas.core.internals import ( ArrayManager, BlockManager, ) from pandas.core.internals.construction import ( arrays_to_mgr, dataclasses_to_dicts, dict_to_mgr, mgr_to_mgr, ndarray_to_mgr, nested_data_to_arrays, rec_array_to_mgr, reorder_arrays, to_arrays, treat_as_nested, ) from pandas.core.methods import selectn from pandas.core.reshape.melt import melt from pandas.core.series import Series from pandas.core.shared_docs import _shared_docs from pandas.core.sorting import ( get_group_index, lexsort_indexer, nargsort, ) from pandas.io.common import get_handle from pandas.io.formats import ( console, format as fmt, ) from pandas.io.formats.info import ( INFO_DOCSTRING, DataFrameInfo, frame_sub_kwargs, ) import pandas.plotting if TYPE_CHECKING: import datetime from pandas._libs.internals import BlockValuesRefs from pandas._typing import ( AggFuncType, AnyAll, AnyArrayLike, ArrayLike, Axes, Axis, AxisInt, ColspaceArgType, CompressionOptions, CorrelationMethod, DropKeep, Dtype, DtypeObj, FilePath, FloatFormatType, FormattersType, Frequency, FromDictOrient, IgnoreRaise, IndexKeyFunc, IndexLabel, JoinValidate, Level, MergeHow, MergeValidate, MutableMappingT, NaAction, NaPosition, NsmallestNlargestKeep, PythonFuncType, QuantileInterpolation, ReadBuffer, ReindexMethod, Renamer, Scalar, Self, SequenceNotStr, SortKind, StorageOptions, Suffixes, ToGbqIfexist, ToStataByteorder, ToTimestampHow, UpdateJoin, ValueKeyFunc, WriteBuffer, XMLParsers, npt, ) from pandas.core.groupby.generic import DataFrameGroupBy from pandas.core.interchange.dataframe_protocol import DataFrame as DataFrameXchg from pandas.core.internals import SingleDataManager from pandas.io.formats.style import Styler # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = { "axes": "index, columns", "klass": "DataFrame", "axes_single_arg": "{0 or 'index', 1 or 'columns'}", "axis": """axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", "inplace": """ inplace : bool, default False Whether to modify the DataFrame rather than creating a new one.""", "optional_by": """ by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels.""", "optional_reindex": """ labels : array-like, optional New labels / index to conform the axis specified by 'axis' to. index : array-like, optional New labels for the index. Preferably an Index object to avoid duplicating data. columns : array-like, optional New labels for the columns. Preferably an Index object to avoid duplicating data. axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", } _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. A named Series object is treated as a DataFrame with a single named column. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. When performing a cross merge, no column specifications to merge on are allowed. .. warning:: If both key columns contain rows where the key is a null value, those rows will be matched against each other. This is different from usual SQL join behaviour and can lead to unexpected results. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. * cross: creates the cartesian product from both frames, preserves the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : list-like, default is ("_x", "_y") A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in `left` and `right` respectively. Pass a value of `None` instead of a string to indicate that the column name from `left` or `right` should be left as-is, with no suffix. At least one of the values must not be None. copy : bool, default True If False, avoid copy if possible. .. note:: The `copy` keyword will change behavior in pandas 3.0. `Copy-on-Write `__ will be enabled by default, which means that all methods with a `copy` keyword will use a lazy copy mechanism to defer the copy and ignore the `copy` keyword. The `copy` keyword will be removed in a future version of pandas. You can already get the future behavior and improvements through enabling copy on write ``pd.options.mode.copy_on_write = True`` indicator : bool or str, default False If True, adds a column to the output DataFrame called "_merge" with information on the source of each row. The column can be given a different name by providing a string argument. The column will have a Categorical type with the value of "left_only" for observations whose merge key only appears in the left DataFrame, "right_only" for observations whose merge key only appears in the right DataFrame, and "both" if the observation's merge key is found in both DataFrames. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 bar 2 bar 6 3 baz 3 baz 7 4 foo 5 foo 5 5 foo 5 foo 8 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 bar 2 bar 6 3 baz 3 baz 7 4 foo 5 foo 5 5 foo 5 foo 8 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') >>> df1 = pd.DataFrame({'a': ['foo', 'bar'], 'b': [1, 2]}) >>> df2 = pd.DataFrame({'a': ['foo', 'baz'], 'c': [3, 4]}) >>> df1 a b 0 foo 1 1 bar 2 >>> df2 a c 0 foo 3 1 baz 4 >>> df1.merge(df2, how='inner', on='a') a b c 0 foo 1 3 >>> df1.merge(df2, how='left', on='a') a b c 0 foo 1 3.0 1 bar 2 NaN >>> df1 = pd.DataFrame({'left': ['foo', 'bar']}) >>> df2 = pd.DataFrame({'right': [7, 8]}) >>> df1 left 0 foo 1 bar >>> df2 right 0 7 1 8 >>> df1.merge(df2, how='cross') left right 0 foo 7 1 foo 8 2 bar 7 3 bar 8 """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame, OpsMixin): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, dataclass or list-like objects. If data is a dict, column order follows insertion-order. If a dict contains Series which have an index defined, it is aligned by its index. This alignment also occurs if data is a Series or a DataFrame itself. Alignment is done on Series/DataFrame inputs. If data is a list of dicts, column order follows insertion-order. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame when data does not have them, defaulting to RangeIndex(0, 1, 2, ..., n). If data contains column labels, will perform column selection instead. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. copy : bool or None, default None Copy data from inputs. For dict data, the default of None behaves like ``copy=True``. For DataFrame or 2d ndarray input, the default of None behaves like ``copy=False``. If data is a dict containing one or more Series (possibly of different dtypes), ``copy=False`` will ensure that these inputs are not copied. .. versionchanged:: 1.3.0 See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. read_csv : Read a comma-separated values (csv) file into DataFrame. read_table : Read general delimited file into DataFrame. read_clipboard : Read text from clipboard into DataFrame. Notes ----- Please reference the :ref:`User Guide ` for more information. Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from a dictionary including Series: >>> d = {'col1': [0, 1, 2, 3], 'col2': pd.Series([2, 3], index=[2, 3])} >>> pd.DataFrame(data=d, index=[0, 1, 2, 3]) col1 col2 0 0 NaN 1 1 NaN 2 2 2.0 3 3 3.0 Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 Constructing DataFrame from a numpy ndarray that has labeled columns: >>> data = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], ... dtype=[("a", "i4"), ("b", "i4"), ("c", "i4")]) >>> df3 = pd.DataFrame(data, columns=['c', 'a']) ... >>> df3 c a 0 3 1 1 6 4 2 9 7 Constructing DataFrame from dataclass: >>> from dataclasses import make_dataclass >>> Point = make_dataclass("Point", [("x", int), ("y", int)]) >>> pd.DataFrame([Point(0, 0), Point(0, 3), Point(2, 3)]) x y 0 0 0 1 0 3 2 2 3 Constructing DataFrame from Series/DataFrame: >>> ser = pd.Series([1, 2, 3], index=["a", "b", "c"]) >>> df = pd.DataFrame(data=ser, index=["a", "c"]) >>> df 0 a 1 c 3 >>> df1 = pd.DataFrame([1, 2, 3], index=["a", "b", "c"], columns=["x"]) >>> df2 = pd.DataFrame(data=df1, index=["a", "c"]) >>> df2 x a 1 c 3 """ _internal_names_set = {"columns", "index"} | NDFrame._internal_names_set _typ = "dataframe" _HANDLED_TYPES = (Series, Index, ExtensionArray, np.ndarray) _accessors: set[str] = {"sparse"} _hidden_attrs: frozenset[str] = NDFrame._hidden_attrs | frozenset([]) _mgr: BlockManager | ArrayManager # similar to __array_priority__, positions DataFrame before Series, Index, # and ExtensionArray. Should NOT be overridden by subclasses. __pandas_priority__ = 4000 @property def _constructor(self) -> Callable[..., DataFrame]: return DataFrame def _constructor_from_mgr(self, mgr, axes) -> DataFrame: df = DataFrame._from_mgr(mgr, axes=axes) if type(self) is DataFrame: # This would also work `if self._constructor is DataFrame`, but # this check is slightly faster, benefiting the most-common case. return df elif type(self).__name__ == "GeoDataFrame": # Shim until geopandas can override their _constructor_from_mgr # bc they have different behavior for Managers than for DataFrames return self._constructor(mgr) # We assume that the subclass __init__ knows how to handle a # pd.DataFrame object. return self._constructor(df) _constructor_sliced: Callable[..., Series] = Series def _constructor_sliced_from_mgr(self, mgr, axes) -> Series: ser = Series._from_mgr(mgr, axes) ser._name = None # caller is responsible for setting real name if type(self) is DataFrame: # This would also work `if self._constructor_sliced is Series`, but # this check is slightly faster, benefiting the most-common case. return ser # We assume that the subclass __init__ knows how to handle a # pd.Series object. return self._constructor_sliced(ser) # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index: Axes | None = None, columns: Axes | None = None, dtype: Dtype | None = None, copy: bool | None = None, ) -> None: allow_mgr = False if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._mgr allow_mgr = True if not copy: # if not copying data, ensure to still return a shallow copy # to avoid the result sharing the same Manager data = data.copy(deep=False) if isinstance(data, (BlockManager, ArrayManager)): if not allow_mgr: # GH#52419 warnings.warn( f"Passing a {type(data).__name__} to {type(self).__name__} " "is deprecated and will raise in a future version. " "Use public APIs instead.", DeprecationWarning, stacklevel=1, # bump to 2 once pyarrow 15.0 is released with fix ) if using_copy_on_write(): data = data.copy(deep=False) # first check if a Manager is passed without any other arguments # -> use fastpath (without checking Manager type) if index is None and columns is None and dtype is None and not copy: # GH#33357 fastpath NDFrame.__init__(self, data) return manager = _get_option("mode.data_manager", silent=True) is_pandas_object = isinstance(data, (Series, Index, ExtensionArray)) data_dtype = getattr(data, "dtype", None) original_dtype = dtype # GH47215 if isinstance(index, set): raise ValueError("index cannot be a set") if isinstance(columns, set): raise ValueError("columns cannot be a set") if copy is None: if isinstance(data, dict): # retain pre-GH#38939 default behavior copy = True elif ( manager == "array" and isinstance(data, (np.ndarray, ExtensionArray)) and data.ndim == 2 ): # INFO(ArrayManager) by default copy the 2D input array to get # contiguous 1D arrays copy = True elif using_copy_on_write() and not isinstance( data, (Index, DataFrame, Series) ): copy = True else: copy = False if data is None: index = index if index is not None else default_index(0) columns = columns if columns is not None else default_index(0) dtype = dtype if dtype is not None else pandas_dtype(object) data = [] if isinstance(data, (BlockManager, ArrayManager)): mgr = self._init_mgr( data, axes={"index": index, "columns": columns}, dtype=dtype, copy=copy ) elif isinstance(data, dict): # GH#38939 de facto copy defaults to False only in non-dict cases mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager) elif isinstance(data, ma.MaskedArray): from numpy.ma import mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): raise TypeError( "MaskedRecords are not supported. Pass " "{name: data[name] for name in data.dtype.names} " "instead" ) # a masked array data = sanitize_masked_array(data) mgr = ndarray_to_mgr( data, index, columns, dtype=dtype, copy=copy, typ=manager, ) elif isinstance(data, (np.ndarray, Series, Index, ExtensionArray)): if data.dtype.names: # i.e. numpy structured array data = cast(np.ndarray, data) mgr = rec_array_to_mgr( data, index, columns, dtype, copy, typ=manager, ) elif getattr(data, "name", None) is not None: # i.e. Series/Index with non-None name _copy = copy if using_copy_on_write() else True mgr = dict_to_mgr( # error: Item "ndarray" of "Union[ndarray, Series, Index]" has no # attribute "name" {data.name: data}, # type: ignore[union-attr] index, columns, dtype=dtype, typ=manager, copy=_copy, ) else: mgr = ndarray_to_mgr( data, index, columns, dtype=dtype, copy=copy, typ=manager, ) # For data is list-like, or Iterable (will consume into list) elif is_list_like(data): if not isinstance(data, abc.Sequence): if hasattr(data, "__array__"): # GH#44616 big perf improvement for e.g. pytorch tensor data = np.asarray(data) else: data = list(data) if len(data) > 0: if is_dataclass(data[0]): data = dataclasses_to_dicts(data) if not isinstance(data, np.ndarray) and treat_as_nested(data): # exclude ndarray as we may have cast it a few lines above if columns is not None: columns = ensure_index(columns) arrays, columns, index = nested_data_to_arrays( # error: Argument 3 to "nested_data_to_arrays" has incompatible # type "Optional[Collection[Any]]"; expected "Optional[Index]" data, columns, index, # type: ignore[arg-type] dtype, ) mgr = arrays_to_mgr( arrays, columns, index, dtype=dtype, typ=manager, ) else: mgr = ndarray_to_mgr( data, index, columns, dtype=dtype, copy=copy, typ=manager, ) else: mgr = dict_to_mgr( {}, index, columns if columns is not None else default_index(0), dtype=dtype, typ=manager, ) # For data is scalar else: if index is None or columns is None: raise ValueError("DataFrame constructor not properly called!") index = ensure_index(index) columns = ensure_index(columns) if not dtype: dtype, _ = infer_dtype_from_scalar(data) # For data is a scalar extension dtype if isinstance(dtype, ExtensionDtype): # TODO(EA2D): special case not needed with 2D EAs values = [ construct_1d_arraylike_from_scalar(data, len(index), dtype) for _ in range(len(columns)) ] mgr = arrays_to_mgr(values, columns, index, dtype=None, typ=manager) else: arr2d = construct_2d_arraylike_from_scalar( data, len(index), len(columns), dtype, copy, ) mgr = ndarray_to_mgr( arr2d, index, columns, dtype=arr2d.dtype, copy=False, typ=manager, ) # ensure correct Manager type according to settings mgr = mgr_to_mgr(mgr, typ=manager) NDFrame.__init__(self, mgr) if original_dtype is None and is_pandas_object and data_dtype == np.object_: if self.dtypes.iloc[0] != data_dtype: warnings.warn( "Dtype inference on a pandas object " "(Series, Index, ExtensionArray) is deprecated. The DataFrame " "constructor will keep the original dtype in the future. " "Call `infer_objects` on the result to get the old " "behavior.", FutureWarning, stacklevel=2, ) # ---------------------------------------------------------------------- def __dataframe__( self, nan_as_null: bool = False, allow_copy: bool = True ) -> DataFrameXchg: """ Return the dataframe interchange object implementing the interchange protocol. Parameters ---------- nan_as_null : bool, default False `nan_as_null` is DEPRECATED and has no effect. Please avoid using it; it will be removed in a future release. allow_copy : bool, default True Whether to allow memory copying when exporting. If set to False it would cause non-zero-copy exports to fail. Returns ------- DataFrame interchange object The object which consuming library can use to ingress the dataframe. Notes ----- Details on the interchange protocol: https://data-apis.org/dataframe-protocol/latest/index.html Examples -------- >>> df_not_necessarily_pandas = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) >>> interchange_object = df_not_necessarily_pandas.__dataframe__() >>> interchange_object.column_names() Index(['A', 'B'], dtype='object') >>> df_pandas = (pd.api.interchange.from_dataframe ... (interchange_object.select_columns_by_name(['A']))) >>> df_pandas A 0 1 1 2 These methods (``column_names``, ``select_columns_by_name``) should work for any dataframe library which implements the interchange protocol. """ from pandas.core.interchange.dataframe import PandasDataFrameXchg return PandasDataFrameXchg(self, allow_copy=allow_copy) def __dataframe_consortium_standard__( self, *, api_version: str | None = None ) -> Any: """ Provide entry point to the Consortium DataFrame Standard API. This is developed and maintained outside of pandas. Please report any issues to https://github.com/data-apis/dataframe-api-compat. """ dataframe_api_compat = import_optional_dependency("dataframe_api_compat") convert_to_standard_compliant_dataframe = ( dataframe_api_compat.pandas_standard.convert_to_standard_compliant_dataframe ) return convert_to_standard_compliant_dataframe(self, api_version=api_version) def __arrow_c_stream__(self, requested_schema=None): """ Export the pandas DataFrame as an Arrow C stream PyCapsule. This relies on pyarrow to convert the pandas DataFrame to the Arrow format (and follows the default behaviour of ``pyarrow.Table.from_pandas`` in its handling of the index, i.e. store the index as a column except for RangeIndex). This conversion is not necessarily zero-copy. Parameters ---------- requested_schema : PyCapsule, default None The schema to which the dataframe should be casted, passed as a PyCapsule containing a C ArrowSchema representation of the requested schema. Returns ------- PyCapsule """ pa = import_optional_dependency("pyarrow", min_version="14.0.0") if requested_schema is not None: requested_schema = pa.Schema._import_from_c_capsule(requested_schema) table = pa.Table.from_pandas(self, schema=requested_schema) return table.__arrow_c_stream__() # ---------------------------------------------------------------------- @property def axes(self) -> list[Index]: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self) -> tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape : Tuple of array dimensions. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self) -> bool: """ Whether all the columns in a DataFrame have the same type. Returns ------- bool Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ # The "<" part of "<=" here is for empty DataFrame cases return len({arr.dtype for arr in self._mgr.arrays}) <= 1 @property def _can_fast_transpose(self) -> bool: """ Can we transpose this DataFrame without creating any new array objects. """ if isinstance(self._mgr, ArrayManager): return False blocks = self._mgr.blocks if len(blocks) != 1: return False dtype = blocks[0].dtype # TODO(EA2D) special case would be unnecessary with 2D EAs return not is_1d_only_ea_dtype(dtype) @property def _values(self) -> np.ndarray | DatetimeArray | TimedeltaArray | PeriodArray: """ Analogue to ._values that may return a 2D ExtensionArray. """ mgr = self._mgr if isinstance(mgr, ArrayManager): if len(mgr.arrays) == 1 and not is_1d_only_ea_dtype(mgr.arrays[0].dtype): # error: Item "ExtensionArray" of "Union[ndarray, ExtensionArray]" # has no attribute "reshape" return mgr.arrays[0].reshape(-1, 1) # type: ignore[union-attr] return ensure_wrapped_if_datetimelike(self.values) blocks = mgr.blocks if len(blocks) != 1: return ensure_wrapped_if_datetimelike(self.values) arr = blocks[0].values if arr.ndim == 1: # non-2D ExtensionArray return self.values # more generally, whatever we allow in NDArrayBackedExtensionBlock arr = cast("np.ndarray | DatetimeArray | TimedeltaArray | PeriodArray", arr) return arr.T # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self) -> bool: """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self) -> bool: """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if width is None or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if max_rows is not None: # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(line) for line in value.split("\n")) return repr_width < width def _info_repr(self) -> bool: """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self) -> str: """ Return a string representation for a particular DataFrame. """ if self._info_repr(): buf = StringIO() self.info(buf=buf) return buf.getvalue() repr_params = fmt.get_dataframe_repr_params() return self.to_string(**repr_params) def _repr_html_(self) -> str | None: """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO() self.info(buf=buf) # need to escape the , should be the first line. val = buf.getvalue().replace("<", r"<", 1) val = val.replace(">", r">", 1) return f"
{val}
" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") formatter = fmt.DataFrameFormatter( self, columns=None, col_space=None, na_rep="NaN", formatters=None, float_format=None, sparsify=None, justify=None, index_names=True, header=True, index=True, bold_rows=True, escape=True, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=".", ) return fmt.DataFrameRenderer(formatter).to_html(notebook=True) else: return None @overload def to_string( self, buf: None = ..., columns: Axes | None = ..., col_space: int | list[int] | dict[Hashable, int] | None = ..., header: bool | SequenceNotStr[str] = ..., index: bool = ..., na_rep: str = ..., formatters: fmt.FormattersType | None = ..., float_format: fmt.FloatFormatType | None = ..., sparsify: bool | None = ..., index_names: bool = ..., justify: str | None = ..., max_rows: int | None = ..., max_cols: int | None = ..., show_dimensions: bool = ..., decimal: str = ..., line_width: int | None = ..., min_rows: int | None = ..., max_colwidth: int | None = ..., encoding: str | None = ..., ) -> str: ... @overload def to_string( self, buf: FilePath | WriteBuffer[str], columns: Axes | None = ..., col_space: int | list[int] | dict[Hashable, int] | None = ..., header: bool | SequenceNotStr[str] = ..., index: bool = ..., na_rep: str = ..., formatters: fmt.FormattersType | None = ..., float_format: fmt.FloatFormatType | None = ..., sparsify: bool | None = ..., index_names: bool = ..., justify: str | None = ..., max_rows: int | None = ..., max_cols: int | None = ..., show_dimensions: bool = ..., decimal: str = ..., line_width: int | None = ..., min_rows: int | None = ..., max_colwidth: int | None = ..., encoding: str | None = ..., ) -> None: ... @deprecate_nonkeyword_arguments( version="3.0", allowed_args=["self", "buf"], name="to_string" ) @Substitution( header_type="bool or list of str", header="Write out the column names. If a list of columns " "is given, it is assumed to be aliases for the " "column names", col_space_type="int, list or dict of int", col_space="The minimum width of each column. If a list of ints is given " "every integers corresponds with one column. If a dict is given, the key " "references the column, while the value defines the space to use.", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf: FilePath | WriteBuffer[str] | None = None, columns: Axes | None = None, col_space: int | list[int] | dict[Hashable, int] | None = None, header: bool | SequenceNotStr[str] = True, index: bool = True, na_rep: str = "NaN", formatters: fmt.FormattersType | None = None, float_format: fmt.FloatFormatType | None = None, sparsify: bool | None = None, index_names: bool = True, justify: str | None = None, max_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool = False, decimal: str = ".", line_width: int | None = None, min_rows: int | None = None, max_colwidth: int | None = None, encoding: str | None = None, ) -> str | None: """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. min_rows : int, optional The number of rows to display in the console in a truncated repr (when number of rows is above `max_rows`). max_colwidth : int, optional Max width to truncate each column in characters. By default, no limit. encoding : str, default "utf-8" Set character encoding. %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ from pandas import option_context with option_context("display.max_colwidth", max_colwidth): formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, ) return fmt.DataFrameRenderer(formatter).to_string( buf=buf, encoding=encoding, line_width=line_width, ) def _get_values_for_csv( self, *, float_format: FloatFormatType | None, date_format: str | None, decimal: str, na_rep: str, quoting, # int csv.QUOTE_FOO from stdlib ) -> Self: # helper used by to_csv mgr = self._mgr.get_values_for_csv( float_format=float_format, date_format=date_format, decimal=decimal, na_rep=na_rep, quoting=quoting, ) # error: Incompatible return value type (got "DataFrame", expected "Self") return self._constructor_from_mgr(mgr, axes=mgr.axes) # type: ignore[return-value] # ---------------------------------------------------------------------- @property def style(self) -> Styler: """ Returns a Styler object. Contains methods for building a styled HTML representation of the DataFrame. See Also -------- io.formats.style.Styler : Helps style a DataFrame or Series according to the data with HTML and CSS. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3]}) >>> df.style # doctest: +SKIP Please see `Table Visualization <../../user_guide/style.ipynb>`_ for more examples. """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields ------ label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print(f'label: {label}') ... print(f'content: {content}', sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"]) def items(self) -> Iterable[tuple[Hashable, Series]]: if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) def iterrows(self) -> Iterable[tuple[Hashable, Series]]: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. See Also -------- DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. Examples -------- >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 """ columns = self.columns klass = self._constructor_sliced using_cow = using_copy_on_write() for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k).__finalize__(self) if using_cow and self._mgr.is_single_block: s._mgr.add_references(self._mgr) # type: ignore[arg-type] yield k, s def itertuples( self, index: bool = True, name: str | None = "Pandas" ) -> Iterable[tuple[Any, ...]]: """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) if name is not None: # https://github.com/python/mypy/issues/9046 # error: namedtuple() expects a string literal as the first argument itertuple = collections.namedtuple( # type: ignore[misc] name, fields, rename=True ) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self) -> int: """ Returns length of info axis, but here we use the index. """ return len(self.index) @overload def dot(self, other: Series) -> Series: ... @overload def dot(self, other: DataFrame | Index | ArrayLike) -> DataFrame: ... def dot(self, other: AnyArrayLike | DataFrame) -> DataFrame | Series: """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other``. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Series. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right._values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, DataFrame): common_type = find_common_type(list(self.dtypes) + list(other.dtypes)) return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns, copy=False, dtype=common_type, ) elif isinstance(other, Series): common_type = find_common_type(list(self.dtypes) + [other.dtypes]) return self._constructor_sliced( np.dot(lvals, rvals), index=left.index, copy=False, dtype=common_type ) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index, copy=False) else: return self._constructor_sliced(result, index=left.index, copy=False) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") @overload def __matmul__(self, other: Series) -> Series: ... @overload def __matmul__(self, other: AnyArrayLike | DataFrame) -> DataFrame | Series: ... def __matmul__(self, other: AnyArrayLike | DataFrame) -> DataFrame | Series: """ Matrix multiplication using binary `@` operator. """ return self.dot(other) def __rmatmul__(self, other) -> DataFrame: """ Matrix multiplication using binary `@` operator. """ try: return self.T.dot(np.transpose(other)).T except ValueError as err: if "shape mismatch" not in str(err): raise # GH#21581 give exception message for original shapes msg = f"shapes {np.shape(other)} and {self.shape} not aligned" raise ValueError(msg) from err # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict( cls, data: dict, orient: FromDictOrient = "columns", dtype: Dtype | None = None, columns: Axes | None = None, ) -> DataFrame: """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index', 'tight'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. If 'tight', assume a dict with keys ['index', 'columns', 'data', 'index_names', 'column_names']. .. versionadded:: 1.4.0 'tight' as an allowed value for the ``orient`` argument dtype : dtype, default None Data type to force after DataFrame construction, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'`` or ``orient='tight'``. Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame. DataFrame : DataFrame object creation using constructor. DataFrame.to_dict : Convert the DataFrame to a dictionary. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d Specify ``orient='tight'`` to create the DataFrame using a 'tight' format: >>> data = {'index': [('a', 'b'), ('a', 'c')], ... 'columns': [('x', 1), ('y', 2)], ... 'data': [[1, 3], [2, 4]], ... 'index_names': ['n1', 'n2'], ... 'column_names': ['z1', 'z2']} >>> pd.DataFrame.from_dict(data, orient='tight') z1 x y z2 1 2 n1 n2 a b 1 3 c 2 4 """ index = None orient = orient.lower() # type: ignore[assignment] if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(next(iter(data.values())), (Series, dict)): data = _from_nested_dict(data) else: index = list(data.keys()) # error: Incompatible types in assignment (expression has type # "List[Any]", variable has type "Dict[Any, Any]") data = list(data.values()) # type: ignore[assignment] elif orient in ("columns", "tight"): if columns is not None: raise ValueError(f"cannot use columns parameter with orient='{orient}'") else: # pragma: no cover raise ValueError( f"Expected 'index', 'columns' or 'tight' for orient parameter. " f"Got '{orient}' instead" ) if orient != "tight": return cls(data, index=index, columns=columns, dtype=dtype) else: realdata = data["data"] def create_index(indexlist, namelist): index: Index if len(namelist) > 1: index = MultiIndex.from_tuples(indexlist, names=namelist) else: index = Index(indexlist, name=namelist[0]) return index index = create_index(data["index"], data["index_names"]) columns = create_index(data["columns"], data["column_names"]) return cls(realdata, index=index, columns=columns, dtype=dtype) def to_numpy( self, dtype: npt.DTypeLike | None = None, copy: bool = False, na_value: object = lib.no_default, ) -> np.ndarray: """ Convert the DataFrame to a NumPy array. By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. na_value : Any, optional The value to use for missing values. The default value depends on `dtype` and the dtypes of the DataFrame columns. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ if dtype is not None: dtype = np.dtype(dtype) result = self._mgr.as_array(dtype=dtype, copy=copy, na_value=na_value) if result.dtype is not dtype: result = np.asarray(result, dtype=dtype) return result def _create_data_for_split_and_tight_to_dict( self, are_all_object_dtype_cols: bool, object_dtype_indices: list[int] ) -> list: """ Simple helper method to create data for to ``to_dict(orient="split")`` and ``to_dict(orient="tight")`` to create the main output data """ if are_all_object_dtype_cols: data = [ list(map(maybe_box_native, t)) for t in self.itertuples(index=False, name=None) ] else: data = [list(t) for t in self.itertuples(index=False, name=None)] if object_dtype_indices: # If we have object_dtype_cols, apply maybe_box_naive after list # comprehension for perf for row in data: for i in object_dtype_indices: row[i] = maybe_box_native(row[i]) return data @overload def to_dict( self, orient: Literal["dict", "list", "series", "split", "tight", "index"] = ..., *, into: type[MutableMappingT] | MutableMappingT, index: bool = ..., ) -> MutableMappingT: ... @overload def to_dict( self, orient: Literal["records"], *, into: type[MutableMappingT] | MutableMappingT, index: bool = ..., ) -> list[MutableMappingT]: ... @overload def to_dict( self, orient: Literal["dict", "list", "series", "split", "tight", "index"] = ..., *, into: type[dict] = ..., index: bool = ..., ) -> dict: ... @overload def to_dict( self, orient: Literal["records"], *, into: type[dict] = ..., index: bool = ..., ) -> list[dict]: ... # error: Incompatible default for argument "into" (default has type "type # [dict[Any, Any]]", argument has type "type[MutableMappingT] | MutableMappingT") @deprecate_nonkeyword_arguments( version="3.0", allowed_args=["self", "orient"], name="to_dict" ) def to_dict( self, orient: Literal[ "dict", "list", "series", "split", "tight", "records", "index" ] = "dict", into: type[MutableMappingT] | MutableMappingT = dict, # type: ignore[assignment] index: bool = True, ) -> MutableMappingT | list[MutableMappingT]: """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'tight', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'tight' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values], 'index_names' -> [index.names], 'column_names' -> [column.names]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} .. versionadded:: 1.4.0 'tight' as an allowed value for the ``orient`` argument into : class, default dict The collections.abc.MutableMapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. index : bool, default True Whether to include the index item (and index_names item if `orient` is 'tight') in the returned dictionary. Can only be ``False`` when `orient` is 'split' or 'tight'. .. versionadded:: 2.0.0 Returns ------- dict, list or collections.abc.MutableMapping Return a collections.abc.MutableMapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} >>> df.to_dict('tight') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(, {'col1': 1, 'col2': 0.5}), defaultdict(, {'col1': 2, 'col2': 0.75})] """ from pandas.core.methods.to_dict import to_dict return to_dict(self, orient, into=into, index=index) @deprecate_nonkeyword_arguments( version="3.0", allowed_args=["self", "destination_table"], name="to_gbq" ) def to_gbq( self, destination_table: str, project_id: str | None = None, chunksize: int | None = None, reauth: bool = False, if_exists: ToGbqIfexist = "fail", auth_local_webserver: bool = True, table_schema: list[dict[str, str]] | None = None, location: str | None = None, progress_bar: bool = True, credentials=None, ) -> None: """ Write a DataFrame to a Google BigQuery table. .. deprecated:: 2.2.0 Please use ``pandas_gbq.to_gbq`` instead. This function requires the `pandas-gbq package `__. See the `How to authenticate with Google BigQuery `__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists raise pandas_gbq.gbq.TableCreationError. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default True Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. .. versionchanged:: 1.5.0 Default value is changed to ``True``. Google has deprecated the ``auth_local_webserver = False`` `"out of band" (copy-paste) flow `_. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation `__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. Examples -------- Example taken from `Google BigQuery documentation `_ >>> project_id = "my-project" >>> table_id = 'my_dataset.my_table' >>> df = pd.DataFrame({ ... "my_string": ["a", "b", "c"], ... "my_int64": [1, 2, 3], ... "my_float64": [4.0, 5.0, 6.0], ... "my_bool1": [True, False, True], ... "my_bool2": [False, True, False], ... "my_dates": pd.date_range("now", periods=3), ... } ... ) >>> df.to_gbq(table_id, project_id=project_id) # doctest: +SKIP """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float: bool = False, nrows: int | None = None, ) -> DataFrame: """ Convert structured or record ndarray to DataFrame. Creates a DataFrame object from a structured ndarray, sequence of tuples or dicts, or DataFrame. Parameters ---------- data : structured ndarray, sequence of tuples or dicts, or DataFrame Structured input data. .. deprecated:: 2.1.0 Passing a DataFrame is deprecated. index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. exclude : sequence, default None Columns or fields to exclude. columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns). coerce_float : bool, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. nrows : int, default None Number of rows to read if data is an iterator. Returns ------- DataFrame See Also -------- DataFrame.from_dict : DataFrame from dict of array-like or dicts. DataFrame : DataFrame object creation using constructor. Examples -------- Data can be provided as a structured ndarray: >>> data = np.array([(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')], ... dtype=[('col_1', 'i4'), ('col_2', 'U1')]) >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Data can be provided as a list of dicts: >>> data = [{'col_1': 3, 'col_2': 'a'}, ... {'col_1': 2, 'col_2': 'b'}, ... {'col_1': 1, 'col_2': 'c'}, ... {'col_1': 0, 'col_2': 'd'}] >>> pd.DataFrame.from_records(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Data can be provided as a list of tuples with corresponding columns: >>> data = [(3, 'a'), (2, 'b'), (1, 'c'), (0, 'd')] >>> pd.DataFrame.from_records(data, columns=['col_1', 'col_2']) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d """ if isinstance(data, DataFrame): warnings.warn( "Passing a DataFrame to DataFrame.from_records is deprecated. Use " "set_index and/or drop to modify the DataFrame instead.", FutureWarning, stacklevel=find_stack_level(), ) if columns is not None: if is_scalar(columns): columns = [columns] data = data[columns] if index is not None: data = data.set_index(index) if exclude is not None: data = data.drop(columns=exclude) return data.copy(deep=False) result_index = None # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) def maybe_reorder( arrays: list[ArrayLike], arr_columns: Index, columns: Index, index ) -> tuple[list[ArrayLike], Index, Index | None]: """ If our desired 'columns' do not match the data's pre-existing 'arr_columns', we re-order our arrays. This is like a pre-emptive (cheap) reindex. """ if len(arrays): length = len(arrays[0]) else: length = 0 result_index = None if len(arrays) == 0 and index is None and length == 0: result_index = default_index(0) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns, length) return arrays, arr_columns, result_index if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns_list = [] for k, v in data.items(): if k in columns: arr_columns_list.append(k) arrays.append(v) arr_columns = Index(arr_columns_list) arrays, arr_columns, result_index = maybe_reorder( arrays, arr_columns, columns, index ) elif isinstance(data, np.ndarray): arrays, columns = to_arrays(data, columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns) if coerce_float: for i, arr in enumerate(arrays): if arr.dtype == object: # error: Argument 1 to "maybe_convert_objects" has # incompatible type "Union[ExtensionArray, ndarray]"; # expected "ndarray" arrays[i] = lib.maybe_convert_objects( arr, # type: ignore[arg-type] try_float=True, ) arr_columns = ensure_index(arr_columns) if columns is None: columns = arr_columns else: arrays, arr_columns, result_index = maybe_reorder( arrays, arr_columns, columns, index ) if exclude is None: exclude = set() else: exclude = set(exclude) if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] except (KeyError, TypeError): # raised by get_loc, see GH#29258 result_index = index else: result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] columns = columns.drop(exclude) manager = _get_option("mode.data_manager", silent=True) mgr = arrays_to_mgr(arrays, columns, result_index, typ=manager) return cls._from_mgr(mgr, axes=mgr.axes) def to_records( self, index: bool = True, column_dtypes=None, index_dtypes=None ) -> np.rec.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.rec.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.rec.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '>> df.to_records(index_dtypes=">> index_dtypes = f">> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', ' Self: """ Create DataFrame from a list of arrays corresponding to the columns. Parameters ---------- arrays : list-like of arrays Each array in the list corresponds to one column, in order. columns : list-like, Index The column names for the resulting DataFrame. index : list-like, Index The rows labels for the resulting DataFrame. dtype : dtype, optional Optional dtype to enforce for all arrays. verify_integrity : bool, default True Validate and homogenize all input. If set to False, it is assumed that all elements of `arrays` are actual arrays how they will be stored in a block (numpy ndarray or ExtensionArray), have the same length as and are aligned with the index, and that `columns` and `index` are ensured to be an Index object. Returns ------- DataFrame """ if dtype is not None: dtype = pandas_dtype(dtype) manager = _get_option("mode.data_manager", silent=True) columns = ensure_index(columns) if len(columns) != len(arrays): raise ValueError("len(columns) must match len(arrays)") mgr = arrays_to_mgr( arrays, columns, index, dtype=dtype, verify_integrity=verify_integrity, typ=manager, ) return cls._from_mgr(mgr, axes=mgr.axes) @doc( storage_options=_shared_docs["storage_options"], compression_options=_shared_docs["compression_options"] % "path", ) def to_stata( self, path: FilePath | WriteBuffer[bytes], *, convert_dates: dict[Hashable, str] | None = None, write_index: bool = True, byteorder: ToStataByteorder | None = None, time_stamp: datetime.datetime | None = None, data_label: str | None = None, variable_labels: dict[Hashable, str] | None = None, version: int | None = 114, convert_strl: Sequence[Hashable] | None = None, compression: CompressionOptions = "infer", storage_options: StorageOptions | None = None, value_labels: dict[Hashable, dict[float, str]] | None = None, ) -> None: """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- path : str, path object, or buffer String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {{114, 117, 118, 119, None}}, default 114 Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables. Version 119 should usually only be used when the number of variables exceeds the capacity of dta format 118. Exporting smaller datasets in format 119 may have unintended consequences, and, as of November 2020, Stata SE cannot read version 119 files. convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. {compression_options} .. versionchanged:: 1.4.0 Zstandard support. {storage_options} value_labels : dict of dicts Dictionary containing columns as keys and dictionaries of column value to labels as values. Labels for a single variable must be 32,000 characters or smaller. .. versionadded:: 1.4.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({{'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ if version not in (114, 117, 118, 119, None): raise ValueError("Only formats 114, 117, 118 and 119 are supported.") if version == 114: if convert_strl is not None: raise ValueError("strl is not supported in format 114") from pandas.io.stata import StataWriter as statawriter elif version == 117: # Incompatible import of "statawriter" (imported name has type # "Type[StataWriter117]", local name has type "Type[StataWriter]") from pandas.io.stata import ( # type: ignore[assignment] StataWriter117 as statawriter, ) else: # versions 118 and 119 # Incompatible import of "statawriter" (imported name has type # "Type[StataWriter117]", local name has type "Type[StataWriter]") from pandas.io.stata import ( # type: ignore[assignment] StataWriterUTF8 as statawriter, ) kwargs: dict[str, Any] = {} if version is None or version >= 117: # strl conversion is only supported >= 117 kwargs["convert_strl"] = convert_strl if version is None or version >= 118: # Specifying the version is only supported for UTF8 (118 or 119) kwargs["version"] = version writer = statawriter( path, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, compression=compression, storage_options=storage_options, value_labels=value_labels, **kwargs, ) writer.write_file() def to_feather(self, path: FilePath | WriteBuffer[bytes], **kwargs) -> None: """ Write a DataFrame to the binary Feather format. Parameters ---------- path : str, path object, file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. If a string or a path, it will be used as Root Directory path when writing a partitioned dataset. **kwargs : Additional keywords passed to :func:`pyarrow.feather.write_feather`. This includes the `compression`, `compression_level`, `chunksize` and `version` keywords. Notes ----- This function writes the dataframe as a `feather file `_. Requires a default index. For saving the DataFrame with your custom index use a method that supports custom indices e.g. `to_parquet`. Examples -------- >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) >>> df.to_feather("file.feather") # doctest: +SKIP """ from pandas.io.feather_format import to_feather to_feather(self, path, **kwargs) @deprecate_nonkeyword_arguments( version="3.0", allowed_args=["self", "buf"], name="to_markdown" ) @doc( Series.to_markdown, klass=_shared_doc_kwargs["klass"], storage_options=_shared_docs["storage_options"], examples="""Examples -------- >>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | Output markdown with a tabulate option. >>> print(df.to_markdown(tablefmt="grid")) +----+------------+------------+ | | animal_1 | animal_2 | +====+============+============+ | 0 | elk | dog | +----+------------+------------+ | 1 | pig | quetzal | +----+------------+------------+""", ) def to_markdown( self, buf: FilePath | WriteBuffer[str] | None = None, mode: str = "wt", index: bool = True, storage_options: StorageOptions | None = None, **kwargs, ) -> str | None: if "showindex" in kwargs: raise ValueError("Pass 'index' instead of 'showindex") kwargs.setdefault("headers", "keys") kwargs.setdefault("tablefmt", "pipe") kwargs.setdefault("showindex", index) tabulate = import_optional_dependency("tabulate") result = tabulate.tabulate(self, **kwargs) if buf is None: return result with get_handle(buf, mode, storage_options=storage_options) as handles: handles.handle.write(result) return None @overload def to_parquet( self, path: None = ..., engine: Literal["auto", "pyarrow", "fastparquet"] = ..., compression: str | None = ..., index: bool | None = ..., partition_cols: list[str] | None = ..., storage_options: StorageOptions = ..., **kwargs, ) -> bytes: ... @overload def to_parquet( self, path: FilePath | WriteBuffer[bytes], engine: Literal["auto", "pyarrow", "fastparquet"] = ..., compression: str | None = ..., index: bool | None = ..., partition_cols: list[str] | None = ..., storage_options: StorageOptions = ..., **kwargs, ) -> None: ... @deprecate_nonkeyword_arguments( version="3.0", allowed_args=["self", "path"], name="to_parquet" ) @doc(storage_options=_shared_docs["storage_options"]) def to_parquet( self, path: FilePath | WriteBuffer[bytes] | None = None, engine: Literal["auto", "pyarrow", "fastparquet"] = "auto", compression: str | None = "snappy", index: bool | None = None, partition_cols: list[str] | None = None, storage_options: StorageOptions | None = None, **kwargs, ) -> bytes | None: """ Write a DataFrame to the binary parquet format. This function writes the dataframe as a `parquet file `_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide ` for more details. Parameters ---------- path : str, path object, file-like object, or None, default None String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. If None, the result is returned as bytes. If a string or path, it will be used as Root Directory path when writing a partitioned dataset. engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : str or None, default 'snappy' Name of the compression to use. Use ``None`` for no compression. Supported options: 'snappy', 'gzip', 'brotli', 'lz4', 'zstd'. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. partition_cols : list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. Must be None if path is not a string. {storage_options} **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io ` for more details. Returns ------- bytes if no path argument is provided else None See Also -------- read_parquet : Read a parquet file. DataFrame.to_orc : Write an orc file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet `_ or `pyarrow `_ library. Examples -------- >>> df = pd.DataFrame(data={{'col1': [1, 2], 'col2': [3, 4]}}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 If you want to get a buffer to the parquet content you can use a io.BytesIO object, as long as you don't use partition_cols, which creates multiple files. >>> import io >>> f = io.BytesIO() >>> df.to_parquet(f) >>> f.seek(0) 0 >>> content = f.read() """ from pandas.io.parquet import to_parquet return to_parquet( self, path, engine, compression=compression, index=index, partition_cols=partition_cols, storage_options=storage_options, **kwargs, ) def to_orc( self, path: FilePath | WriteBuffer[bytes] | None = None, *, engine: Literal["pyarrow"] = "pyarrow", index: bool | None = None, engine_kwargs: dict[str, Any] | None = None, ) -> bytes | None: """ Write a DataFrame to the ORC format. .. versionadded:: 1.5.0 Parameters ---------- path : str, file-like object or None, default None If a string, it will be used as Root Directory path when writing a partitioned dataset. By file-like object, we refer to objects with a write() method, such as a file handle (e.g. via builtin open function). If path is None, a bytes object is returned. engine : {'pyarrow'}, default 'pyarrow' ORC library to use. index : bool, optional If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``infer`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. engine_kwargs : dict[str, Any] or None, default None Additional keyword arguments passed to :func:`pyarrow.orc.write_table`. Returns ------- bytes if no path argument is provided else None Raises ------ NotImplementedError Dtype of one or more columns is category, unsigned integers, interval, period or sparse. ValueError engine is not pyarrow. See Also -------- read_orc : Read a ORC file. DataFrame.to_parquet : Write a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- * Before using this function you should read the :ref:`user guide about ORC ` and :ref:`install optional dependencies `. * This function requires `pyarrow `_ library. * For supported dtypes please refer to `supported ORC features in Arrow `__. * Currently timezones in datetime columns are not preserved when a dataframe is converted into ORC files. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [4, 3]}) >>> df.to_orc('df.orc') # doctest: +SKIP >>> pd.read_orc('df.orc') # doctest: +SKIP col1 col2 0 1 4 1 2 3 If you want to get a buffer to the orc content you can write it to io.BytesIO >>> import io >>> b = io.BytesIO(df.to_orc()) # doctest: +SKIP >>> b.seek(0) # doctest: +SKIP 0 >>> content = b.read() # doctest: +SKIP """ from pandas.io.orc import to_orc return to_orc( self, path, engine=engine, index=index, engine_kwargs=engine_kwargs ) @overload def to_html( self, buf: FilePath | WriteBuffer[str], columns: Axes | None = ..., col_space: ColspaceArgType | None = ..., header: bool = ..., index: bool = ..., na_rep: str = ..., formatters: FormattersType | None = ..., float_format: FloatFormatType | None = ..., sparsify: bool | None = ..., index_names: bool = ..., justify: str | None = ..., max_rows: int | None = ..., max_cols: int | None = ..., show_dimensions: bool | str = ..., decimal: str = ..., bold_rows: bool = ..., classes: str | list | tuple | None = ..., escape: bool = ..., notebook: bool = ..., border: int | bool | None = ..., table_id: str | None = ..., render_links: bool = ..., encoding: str | None = ..., ) -> None: ... @overload def to_html( self, buf: None = ..., columns: Axes | None = ..., col_space: ColspaceArgType | None = ..., header: bool = ..., index: bool = ..., na_rep: str = ..., formatters: FormattersType | None = ..., float_format: FloatFormatType | None = ..., sparsify: bool | None = ..., index_names: bool = ..., justify: str | None = ..., max_rows: int | None = ..., max_cols: int | None = ..., show_dimensions: bool | str = ..., decimal: str = ..., bold_rows: bool = ..., classes: str | list | tuple | None = ..., escape: bool = ..., notebook: bool = ..., border: int | bool | None = ..., table_id: str | None = ..., render_links: bool = ..., encoding: str | None = ..., ) -> str: ... @deprecate_nonkeyword_arguments( version="3.0", allowed_args=["self", "buf"], name="to_html" ) @Substitution( header_type="bool", header="Whether to print column labels, default True", col_space_type="str or int, list or dict of int or str", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf: FilePath | WriteBuffer[str] | None = None, columns: Axes | None = None, col_space: ColspaceArgType | None = None, header: bool = True, index: bool = True, na_rep: str = "NaN", formatters: FormattersType | None = None, float_format: FloatFormatType | None = None, sparsify: bool | None = None, index_names: bool = True, justify: str | None = None, max_rows: int | None = None, max_cols: int | None = None, show_dimensions: bool | str = False, decimal: str = ".", bold_rows: bool = True, classes: str | list | tuple | None = None, escape: bool = True, notebook: bool = False, border: int | bool | None = None, table_id: str | None = None, render_links: bool = False, encoding: str | None = None, ) -> str | None: """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `` tag. Default ``pd.options.display.html.border``. table_id : str, optional A css id is included in the opening `
` tag if specified. render_links : bool, default False Convert URLs to HTML links. encoding : str, default "utf-8" Set character encoding. %(returns)s See Also -------- to_string : Convert DataFrame to a string. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [4, 3]}) >>> html_string = '''
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
col1col2
014
123
''' >>> assert html_string == df.to_html() """ if justify is not None and justify not in fmt.VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, justify=justify, index_names=index_names, escape=escape, decimal=decimal, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, ) # TODO: a generic formatter wld b in DataFrameFormatter return fmt.DataFrameRenderer(formatter).to_html( buf=buf, classes=classes, notebook=notebook, border=border, encoding=encoding, table_id=table_id, render_links=render_links, ) @overload def to_xml( self, path_or_buffer: None = ..., *, index: bool = ..., root_name: str | None = ..., row_name: str | None = ..., na_rep: str | None = ..., attr_cols: list[str] | None = ..., elem_cols: list[str] | None = ..., namespaces: dict[str | None, str] | None = ..., prefix: str | None = ..., encoding: str = ..., xml_declaration: bool | None = ..., pretty_print: bool | None = ..., parser: XMLParsers | None = ..., stylesheet: FilePath | ReadBuffer[str] | ReadBuffer[bytes] | None = ..., compression: CompressionOptions = ..., storage_options: StorageOptions | None = ..., ) -> str: ... @overload def to_xml( self, path_or_buffer: FilePath | WriteBuffer[bytes] | WriteBuffer[str], *, index: bool = ..., root_name: str | None = ..., row_name: str | None = ..., na_rep: str | None = ..., attr_cols: list[str] | None = ..., elem_cols: list[str] | None = ..., namespaces: dict[str | None, str] | None = ..., prefix: str | None = ..., encoding: str = ..., xml_declaration: bool | None = ..., pretty_print: bool | None = ..., parser: XMLParsers | None = ..., stylesheet: FilePath | ReadBuffer[str] | ReadBuffer[bytes] | None = ..., compression: CompressionOptions = ..., storage_options: StorageOptions | None = ..., ) -> None: ... @deprecate_nonkeyword_arguments( version="3.0", allowed_args=["self", "path_or_buffer"], name="to_xml" ) @doc( storage_options=_shared_docs["storage_options"], compression_options=_shared_docs["compression_options"] % "path_or_buffer", ) def to_xml( self, path_or_buffer: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None, index: bool = True, root_name: str | None = "data", row_name: str | None = "row", na_rep: str | None = None, attr_cols: list[str] | None = None, elem_cols: list[str] | None = None, namespaces: dict[str | None, str] | None = None, prefix: str | None = None, encoding: str = "utf-8", xml_declaration: bool | None = True, pretty_print: bool | None = True, parser: XMLParsers | None = "lxml", stylesheet: FilePath | ReadBuffer[str] | ReadBuffer[bytes] | None = None, compression: CompressionOptions = "infer", storage_options: StorageOptions | None = None, ) -> str | None: """ Render a DataFrame to an XML document. .. versionadded:: 1.3.0 Parameters ---------- path_or_buffer : str, path object, file-like object, or None, default None String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a ``write()`` function. If None, the result is returned as a string. index : bool, default True Whether to include index in XML document. root_name : str, default 'data' The name of root element in XML document. row_name : str, default 'row' The name of row element in XML document. na_rep : str, optional Missing data representation. attr_cols : list-like, optional List of columns to write as attributes in row element. Hierarchical columns will be flattened with underscore delimiting the different levels. elem_cols : list-like, optional List of columns to write as children in row element. By default, all columns output as children of row element. Hierarchical columns will be flattened with underscore delimiting the different levels. namespaces : dict, optional All namespaces to be defined in root element. Keys of dict should be prefix names and values of dict corresponding URIs. Default namespaces should be given empty string key. For example, :: namespaces = {{"": "https://example.com"}} prefix : str, optional Namespace prefix to be used for every element and/or attribute in document. This should be one of the keys in ``namespaces`` dict. encoding : str, default 'utf-8' Encoding of the resulting document. xml_declaration : bool, default True Whether to include the XML declaration at start of document. pretty_print : bool, default True Whether output should be pretty printed with indentation and line breaks. parser : {{'lxml','etree'}}, default 'lxml' Parser module to use for building of tree. Only 'lxml' and 'etree' are supported. With 'lxml', the ability to use XSLT stylesheet is supported. stylesheet : str, path object or file-like object, optional A URL, file-like object, or a raw string containing an XSLT script used to transform the raw XML output. Script should use layout of elements and attributes from original output. This argument requires ``lxml`` to be installed. Only XSLT 1.0 scripts and not later versions is currently supported. {compression_options} .. versionchanged:: 1.4.0 Zstandard support. {storage_options} Returns ------- None or str If ``io`` is None, returns the resulting XML format as a string. Otherwise returns None. See Also -------- to_json : Convert the pandas object to a JSON string. to_html : Convert DataFrame to a html. Examples -------- >>> df = pd.DataFrame({{'shape': ['square', 'circle', 'triangle'], ... 'degrees': [360, 360, 180], ... 'sides': [4, np.nan, 3]}}) >>> df.to_xml() # doctest: +SKIP 0 square 360 4.0 1 circle 360 2 triangle 180 3.0 >>> df.to_xml(attr_cols=[ ... 'index', 'shape', 'degrees', 'sides' ... ]) # doctest: +SKIP >>> df.to_xml(namespaces={{"doc": "https://example.com"}}, ... prefix="doc") # doctest: +SKIP 0 square 360 4.0 1 circle 360 2 triangle 180 3.0 """ from pandas.io.formats.xml import ( EtreeXMLFormatter, LxmlXMLFormatter, ) lxml = import_optional_dependency("lxml.etree", errors="ignore") TreeBuilder: type[EtreeXMLFormatter | LxmlXMLFormatter] if parser == "lxml": if lxml is not None: TreeBuilder = LxmlXMLFormatter else: raise ImportError( "lxml not found, please install or use the etree parser." ) elif parser == "etree": TreeBuilder = EtreeXMLFormatter else: raise ValueError("Values for parser can only be lxml or etree.") xml_formatter = TreeBuilder( self, path_or_buffer=path_or_buffer, index=index, root_name=root_name, row_name=row_name, na_rep=na_rep, attr_cols=attr_cols, elem_cols=elem_cols, namespaces=namespaces, prefix=prefix, encoding=encoding, xml_declaration=xml_declaration, pretty_print=pretty_print, stylesheet=stylesheet, compression=compression, storage_options=storage_options, ) return xml_formatter.write_output() # ---------------------------------------------------------------------- @doc(INFO_DOCSTRING, **frame_sub_kwargs) def info( self, verbose: bool | None = None, buf: WriteBuffer[str] | None = None, max_cols: int | None = None, memory_usage: bool | str | None = None, show_counts: bool | None = None, ) -> None: info = DataFrameInfo( data=self, memory_usage=memory_usage, ) info.render( buf=buf, max_cols=max_cols, verbose=verbose, show_counts=show_counts, ) def memory_usage(self, index: bool = True, deep: bool = False) -> Series: """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Notes ----- See the :ref:`Frequently Asked Questions ` for more details. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000, dtype=int).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.0+0.0j 1 True 1 1 1.0 1.0+0.0j 1 True 2 1 1.0 1.0+0.0j 1 True 3 1 1.0 1.0+0.0j 1 True 4 1 1.0 1.0+0.0j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 180000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5244 """ result = self._constructor_sliced( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, dtype=np.intp, ) if index: index_memory_usage = self._constructor_sliced( self.index.memory_usage(deep=deep), index=["Index"] ) result = index_memory_usage._append(result) return result def transpose(self, *args, copy: bool = False) -> DataFrame: """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- *args : tuple, optional Accepted for compatibility with NumPy. copy : bool, default False Whether to copy the data after transposing, even for DataFrames with a single dtype. Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types. .. note:: The `copy` keyword will change behavior in pandas 3.0. `Copy-on-Write `__ will be enabled by default, which means that all methods with a `copy` keyword will use a lazy copy mechanism to defer the copy and ignore the `copy` keyword. The `copy` keyword will be removed in a future version of pandas. You can already get the future behavior and improvements through enabling copy on write ``pd.options.mode.copy_on_write = True`` Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8.0 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, {}) # construct the args dtypes = list(self.dtypes) if self._can_fast_transpose: # Note: tests pass without this, but this improves perf quite a bit. new_vals = self._values.T if copy and not using_copy_on_write(): new_vals = new_vals.copy() result = self._constructor( new_vals, index=self.columns, columns=self.index, copy=False, dtype=new_vals.dtype, ) if using_copy_on_write() and len(self) > 0: result._mgr.add_references(self._mgr) # type: ignore[arg-type] elif ( self._is_homogeneous_type and dtypes and isinstance(dtypes[0], ExtensionDtype) ): new_values: list if isinstance(dtypes[0], BaseMaskedDtype): # We have masked arrays with the same dtype. We can transpose faster. from pandas.core.arrays.masked import ( transpose_homogeneous_masked_arrays, ) new_values = transpose_homogeneous_masked_arrays( cast(Sequence[BaseMaskedArray], self._iter_column_arrays()) ) elif isinstance(dtypes[0], ArrowDtype): # We have arrow EAs with the same dtype. We can transpose faster. from pandas.core.arrays.arrow.array import ( ArrowExtensionArray, transpose_homogeneous_pyarrow, ) new_values = transpose_homogeneous_pyarrow( cast(Sequence[ArrowExtensionArray], self._iter_column_arrays()) ) else: # We have other EAs with the same dtype. We preserve dtype in transpose. dtyp = dtypes[0] arr_typ = dtyp.construct_array_type() values = self.values new_values = [arr_typ._from_sequence(row, dtype=dtyp) for row in values] result = type(self)._from_arrays( new_values, index=self.columns, columns=self.index, verify_integrity=False, ) else: new_arr = self.values.T if copy and not using_copy_on_write(): new_arr = new_arr.copy() result = self._constructor( new_arr, index=self.columns, columns=self.index, dtype=new_arr.dtype, # We already made a copy (more than one block) copy=False, ) return result.__finalize__(self, method="transpose") @property def T(self) -> DataFrame: """ The transpose of the DataFrame. Returns ------- DataFrame The transposed DataFrame. See Also -------- DataFrame.transpose : Transpose index and columns. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df col1 col2 0 1 3 1 2 4 >>> df.T 0 1 col1 1 2 col2 3 4 """ return self.transpose() # ---------------------------------------------------------------------- # Indexing Methods def _ixs(self, i: int, axis: AxisInt = 0) -> Series: """ Parameters ---------- i : int axis : int Returns ------- Series """ # irow if axis == 0: new_mgr = self._mgr.fast_xs(i) # if we are a copy, mark as such copy = isinstance(new_mgr.array, np.ndarray) and new_mgr.array.base is None result = self._constructor_sliced_from_mgr(new_mgr, axes=new_mgr.axes) result._name = self.index[i] result = result.__finalize__(self) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] col_mgr = self._mgr.iget(i) result = self._box_col_values(col_mgr, i) # this is a cached value, mark it so result._set_as_cached(label, self) return result def _get_column_array(self, i: int) -> ArrayLike: """ Get the values of the i'th column (ndarray or ExtensionArray, as stored in the Block) Warning! The returned array is a view but doesn't handle Copy-on-Write, so this should be used with caution (for read-only purposes). """ return self._mgr.iget_values(i) def _iter_column_arrays(self) -> Iterator[ArrayLike]: """ Iterate over the arrays of all columns in order. This returns the values as stored in the Block (ndarray or ExtensionArray). Warning! The returned array is a view but doesn't handle Copy-on-Write, so this should be used with caution (for read-only purposes). """ if isinstance(self._mgr, ArrayManager): yield from self._mgr.arrays else: for i in range(len(self.columns)): yield self._get_column_array(i) def _getitem_nocopy(self, key: list): """ Behaves like __getitem__, but returns a view in cases where __getitem__ would make a copy. """ # TODO(CoW): can be removed if/when we are always Copy-on-Write indexer = self.columns._get_indexer_strict(key, "columns")[1] new_axis = self.columns[indexer] new_mgr = self._mgr.reindex_indexer( new_axis, indexer, axis=0, allow_dups=True, copy=False, only_slice=True, ) result = self._constructor_from_mgr(new_mgr, axes=new_mgr.axes) result = result.__finalize__(self) return result def __getitem__(self, key): check_dict_or_set_indexers(key) key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key) and not is_iterator(key): # is_iterator to exclude generator e.g. test_getitem_listlike # shortcut if the key is in columns is_mi = isinstance(self.columns, MultiIndex) # GH#45316 Return view if key is not duplicated # Only use drop_duplicates with duplicates for performance if not is_mi and ( self.columns.is_unique and key in self.columns or key in self.columns.drop_duplicates(keep=False) ): return self._get_item_cache(key) elif is_mi and self.columns.is_unique and key in self.columns: return self._getitem_multilevel(key) # Do we have a slicer (on rows)? if isinstance(key, slice): return self._getitem_slice(key) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self.where(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.columns._get_indexer_strict(key, "columns")[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] if isinstance(indexer, slice): return self._slice(indexer, axis=1) data = self._take_with_is_copy(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, MultiIndex): # GH#26490 using data[key] can cause RecursionError return data._get_item_cache(key) return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match DataFrame index.", UserWarning, stacklevel=find_stack_level(), ) elif len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}." ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) if key.all(): return self.copy(deep=None) indexer = key.nonzero()[0] return self._take_with_is_copy(indexer, axis=0) def _getitem_multilevel(self, key): # self.columns is a MultiIndex loc = self.columns.get_loc(key) if isinstance(loc, (slice, np.ndarray)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) result = self.iloc[:, loc] result.columns = result_columns # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: # e.g. test_frame_getitem_multicolumn_empty_level, # test_frame_mixed_depth_get, test_loc_setitem_single_column_slice top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: # loc is neither a slice nor ndarray, so must be an int return self._ixs(loc, axis=1) def _get_value(self, index, col, takeable: bool = False) -> Scalar: """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar Notes ----- Assumes that both `self.index._index_as_unique` and `self.columns._index_as_unique`; Caller is responsible for checking. """ if takeable: series = self._ixs(col, axis=1) return series._values[index] series = self._get_item_cache(col) engine = self.index._engine if not isinstance(self.index, MultiIndex): # CategoricalIndex: Trying to use the engine fastpath may give incorrect # results if our categories are integers that dont match our codes # IntervalIndex: IntervalTree has no get_loc row = self.index.get_loc(index) return series._values[row] # For MultiIndex going through engine effectively restricts us to # same-length tuples; see test_get_set_value_no_partial_indexing loc = engine.get_loc(index) return series._values[loc] def isetitem(self, loc, value) -> None: """ Set the given value in the column with position `loc`. This is a positional analogue to ``__setitem__``. Parameters ---------- loc : int or sequence of ints Index position for the column. value : scalar or arraylike Value(s) for the column. Notes ----- ``frame.isetitem(loc, value)`` is an in-place method as it will modify the DataFrame in place (not returning a new object). In contrast to ``frame.iloc[:, i] = value`` which will try to update the existing values in place, ``frame.isetitem(loc, value)`` will not update the values of the column itself in place, it will instead insert a new array. In cases where ``frame.columns`` is unique, this is equivalent to ``frame[frame.columns[i]] = value``. """ if isinstance(value, DataFrame): if is_integer(loc): loc = [loc] if len(loc) != len(value.columns): raise ValueError( f"Got {len(loc)} positions but value has {len(value.columns)} " f"columns." ) for i, idx in enumerate(loc): arraylike, refs = self._sanitize_column(value.iloc[:, i]) self._iset_item_mgr(idx, arraylike, inplace=False, refs=refs) return arraylike, refs = self._sanitize_column(value) self._iset_item_mgr(loc, arraylike, inplace=False, refs=refs) def __setitem__(self, key, value) -> None: if not PYPY and using_copy_on_write(): if sys.getrefcount(self) <= 3: warnings.warn( _chained_assignment_msg, ChainedAssignmentError, stacklevel=2 ) elif not PYPY and not using_copy_on_write(): if sys.getrefcount(self) <= 3 and ( warn_copy_on_write() or ( not warn_copy_on_write() and any(b.refs.has_reference() for b in self._mgr.blocks) # type: ignore[union-attr] ) ): warnings.warn( _chained_assignment_warning_msg, FutureWarning, stacklevel=2 ) key = com.apply_if_callable(key, self) # see if we can slice the rows if isinstance(key, slice): slc = self.index._convert_slice_indexer(key, kind="getitem") return self._setitem_slice(slc, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) elif isinstance(value, DataFrame): self._set_item_frame_value(key, value) elif ( is_list_like(value) and not self.columns.is_unique and 1 < len(self.columns.get_indexer_for([key])) == len(value) ): # Column to set is duplicated self._setitem_array([key], value) else: # set column self._set_item(key, value) def _setitem_slice(self, key: slice, value) -> None: # NB: we can't just use self.loc[key] = value because that # operates on labels and we need to operate positional for # backwards-compat, xref GH#31469 self._check_setitem_copy() self.iloc[key] = value def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): # bool indexer is indexing along rows if len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}!" ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() if isinstance(value, DataFrame): # GH#39931 reindex since iloc does not align value = value.reindex(self.index.take(indexer)) self.iloc[indexer] = value else: # Note: unlike self.iloc[:, indexer] = value, this will # never try to overwrite values inplace if isinstance(value, DataFrame): check_key_length(self.columns, key, value) for k1, k2 in zip(key, value.columns): self[k1] = value[k2] elif not is_list_like(value): for col in key: self[col] = value elif isinstance(value, np.ndarray) and value.ndim == 2: self._iset_not_inplace(key, value) elif np.ndim(value) > 1: # list of lists value = DataFrame(value).values return self._setitem_array(key, value) else: self._iset_not_inplace(key, value) def _iset_not_inplace(self, key, value): # GH#39510 when setting with df[key] = obj with a list-like key and # list-like value, we iterate over those listlikes and set columns # one at a time. This is different from dispatching to # `self.loc[:, key]= value` because loc.__setitem__ may overwrite # data inplace, whereas this will insert new arrays. def igetitem(obj, i: int): # Note: we catch DataFrame obj before getting here, but # hypothetically would return obj.iloc[:, i] if isinstance(obj, np.ndarray): return obj[..., i] else: return obj[i] if self.columns.is_unique: if np.shape(value)[-1] != len(key): raise ValueError("Columns must be same length as key") for i, col in enumerate(key): self[col] = igetitem(value, i) else: ilocs = self.columns.get_indexer_non_unique(key)[0] if (ilocs < 0).any(): # key entries not in self.columns raise NotImplementedError if np.shape(value)[-1] != len(ilocs): raise ValueError("Columns must be same length as key") assert np.ndim(value) <= 2 orig_columns = self.columns # Using self.iloc[:, i] = ... may set values inplace, which # by convention we do not do in __setitem__ try: self.columns = Index(range(len(self.columns))) for i, iloc in enumerate(ilocs): self[iloc] = igetitem(value, i) finally: self.columns = orig_columns def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict(), copy=False) if key.size and not all(is_bool_dtype(dtype) for dtype in key.dtypes): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_setitem_copy() self._where(-key, value, inplace=True) def _set_item_frame_value(self, key, value: DataFrame) -> None: self._ensure_valid_index(value) # align columns if key in self.columns: loc = self.columns.get_loc(key) cols = self.columns[loc] len_cols = 1 if is_scalar(cols) or isinstance(cols, tuple) else len(cols) if len_cols != len(value.columns): raise ValueError("Columns must be same length as key") # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, MultiIndex) and isinstance( loc, (slice, Series, np.ndarray, Index) ): cols_droplevel = maybe_droplevels(cols, key) if len(cols_droplevel) and not cols_droplevel.equals(value.columns): value = value.reindex(cols_droplevel, axis=1) for col, col_droplevel in zip(cols, cols_droplevel): self[col] = value[col_droplevel] return if is_scalar(cols): self[cols] = value[value.columns[0]] return locs: np.ndarray | list if isinstance(loc, slice): locs = np.arange(loc.start, loc.stop, loc.step) elif is_scalar(loc): locs = [loc] else: locs = loc.nonzero()[0] return self.isetitem(locs, value) if len(value.columns) > 1: raise ValueError( "Cannot set a DataFrame with multiple columns to the single " f"column {key}" ) elif len(value.columns) == 0: raise ValueError( f"Cannot set a DataFrame without columns to the column {key}" ) self[key] = value[value.columns[0]] def _iset_item_mgr( self, loc: int | slice | np.ndarray, value, inplace: bool = False, refs: BlockValuesRefs | None = None, ) -> None: # when called from _set_item_mgr loc can be anything returned from get_loc self._mgr.iset(loc, value, inplace=inplace, refs=refs) self._clear_item_cache() def _set_item_mgr( self, key, value: ArrayLike, refs: BlockValuesRefs | None = None ) -> None: try: loc = self._info_axis.get_loc(key) except KeyError: # This item wasn't present, just insert at end self._mgr.insert(len(self._info_axis), key, value, refs) else: self._iset_item_mgr(loc, value, refs=refs) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _iset_item(self, loc: int, value: Series, inplace: bool = True) -> None: # We are only called from _replace_columnwise which guarantees that # no reindex is necessary if using_copy_on_write(): self._iset_item_mgr( loc, value._values, inplace=inplace, refs=value._references ) else: self._iset_item_mgr(loc, value._values.copy(), inplace=True) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_item(self, key, value) -> None: """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ value, refs = self._sanitize_column(value) if ( key in self.columns and value.ndim == 1 and not isinstance(value.dtype, ExtensionDtype) ): # broadcast across multiple columns if necessary if not self.columns.is_unique or isinstance(self.columns, MultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)).T refs = None self._set_item_mgr(key, value, refs) def _set_value( self, index: IndexLabel, col, value: Scalar, takeable: bool = False ) -> None: """ Put single value at passed column and index. Parameters ---------- index : Label row label col : Label column label value : scalar takeable : bool, default False Sets whether or not index/col interpreted as indexers """ try: if takeable: icol = col iindex = cast(int, index) else: icol = self.columns.get_loc(col) iindex = self.index.get_loc(index) self._mgr.column_setitem(icol, iindex, value, inplace_only=True) self._clear_item_cache() except (KeyError, TypeError, ValueError, LossySetitemError): # get_loc might raise a KeyError for missing labels (falling back # to (i)loc will do expansion of the index) # column_setitem will do validation that may raise TypeError, # ValueError, or LossySetitemError # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) except InvalidIndexError as ii_err: # GH48729: Seems like you are trying to assign a value to a # row when only scalar options are permitted raise InvalidIndexError( f"You can only assign a scalar value not a {type(value)}" ) from ii_err def _ensure_valid_index(self, value) -> None: """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value) and len(value): if not isinstance(value, DataFrame): try: value = Series(value) except (ValueError, NotImplementedError, TypeError) as err: raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a Series" ) from err # GH31368 preserve name of index index_copy = value.index.copy() if self.index.name is not None: index_copy.name = self.index.name self._mgr = self._mgr.reindex_axis(index_copy, axis=1, fill_value=np.nan) def _box_col_values(self, values: SingleDataManager, loc: int) -> Series: """ Provide boxed values for a column. """ # Lookup in columns so that if e.g. a str datetime was passed # we attach the Timestamp object as the name. name = self.columns[loc] # We get index=self.index bc values is a SingleDataManager obj = self._constructor_sliced_from_mgr(values, axes=values.axes) obj._name = name return obj.__finalize__(self) # ---------------------------------------------------------------------- # Lookup Caching def _clear_item_cache(self) -> None: self._item_cache.clear() def _get_item_cache(self, item: Hashable) -> Series: """Return the cached item, item represents a label indexer.""" if using_copy_on_write() or warn_copy_on_write(): loc = self.columns.get_loc(item) return self._ixs(loc, axis=1) cache = self._item_cache res = cache.get(item) if res is None: # All places that call _get_item_cache have unique columns, # pending resolution of GH#33047 loc = self.columns.get_loc(item) res = self._ixs(loc, axis=1) cache[item] = res # for a chain res._is_copy = self._is_copy return res def _reset_cacher(self) -> None: # no-op for DataFrame pass def _maybe_cache_changed(self, item, value: Series, inplace: bool) -> None: """ The object has called back to us saying maybe it has changed. """ loc = self._info_axis.get_loc(item) arraylike = value._values old = self._ixs(loc, axis=1) if old._values is value._values and inplace: # GH#46149 avoid making unnecessary copies/block-splitting return self._mgr.iset(loc, arraylike, inplace=inplace) # ---------------------------------------------------------------------- # Unsorted @overload def query(self, expr: str, *, inplace: Literal[False] = ..., **kwargs) -> DataFrame: ... @overload def query(self, expr: str, *, inplace: Literal[True], **kwargs) -> None: ... @overload def query(self, expr: str, *, inplace: bool = ..., **kwargs) -> DataFrame | None: ... def query(self, expr: str, *, inplace: bool = False, **kwargs) -> DataFrame | None: """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. You can refer to column names that are not valid Python variable names by surrounding them in backticks. Thus, column names containing spaces or punctuations (besides underscores) or starting with digits must be surrounded by backticks. (For example, a column named "Area (cm^2)" would be referenced as ```Area (cm^2)```). Column names which are Python keywords (like "list", "for", "import", etc) cannot be used. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. inplace : bool Whether to modify the DataFrame rather than creating a new one. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame or None DataFrame resulting from the provided query expression or None if ``inplace=True``. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing `. *Backtick quoted variables* Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems. During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped). In a special case, quotes that make a pair around a backtick can confuse the parser. For example, ```it's` > `that's``` will raise an error, as it forms a quoted string (``'s > `that'``) with a backtick inside. See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in :mod:`pandas.core.computation.parsing`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = f"expr must be a string to be evaluated, {type(expr)} given" raise ValueError(msg) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: result = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query result = self[res] if inplace: self._update_inplace(result) return None else: return result @overload def eval(self, expr: str, *, inplace: Literal[False] = ..., **kwargs) -> Any: ... @overload def eval(self, expr: str, *, inplace: Literal[True], **kwargs) -> None: ... def eval(self, expr: str, *, inplace: bool = False, **kwargs) -> Any | None: """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, pandas object, or None The result of the evaluation or None if ``inplace=True``. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval `. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") kwargs["level"] = kwargs.pop("level", 0) + 1 index_resolvers = self._get_index_resolvers() column_resolvers = self._get_cleaned_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = tuple(kwargs.get("resolvers", ())) + resolvers return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None) -> Self: """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. See Also -------- DataFrame.dtypes: Return Series with the data type of each column. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy `__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int64']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = (frozenset(include), frozenset(exclude)) if not any(selection): raise ValueError("at least one of include or exclude must be nonempty") # convert the myriad valid dtypes object to a single representation def check_int_infer_dtype(dtypes): converted_dtypes: list[type] = [] for dtype in dtypes: # Numpy maps int to different types (int32, in64) on Windows and Linux # see https://github.com/numpy/numpy/issues/9464 if (isinstance(dtype, str) and dtype == "int") or (dtype is int): converted_dtypes.append(np.int32) converted_dtypes.append(np.int64) elif dtype == "float" or dtype is float: # GH#42452 : np.dtype("float") coerces to np.float64 from Numpy 1.20 converted_dtypes.extend([np.float64, np.float32]) else: converted_dtypes.append(infer_dtype_from_object(dtype)) return frozenset(converted_dtypes) include = check_int_infer_dtype(include) exclude = check_int_infer_dtype(exclude) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError(f"include and exclude overlap on {(include & exclude)}") def dtype_predicate(dtype: DtypeObj, dtypes_set) -> bool: # GH 46870: BooleanDtype._is_numeric == True but should be excluded dtype = dtype if not isinstance(dtype, ArrowDtype) else dtype.numpy_dtype return issubclass(dtype.type, tuple(dtypes_set)) or ( np.number in dtypes_set and getattr(dtype, "_is_numeric", False) and not is_bool_dtype(dtype) ) def predicate(arr: ArrayLike) -> bool: dtype = arr.dtype if include: if not dtype_predicate(dtype, include): return False if exclude: if dtype_predicate(dtype, exclude): return False return True mgr = self._mgr._get_data_subset(predicate).copy(deep=None) # error: Incompatible return value type (got "DataFrame", expected "Self") return self._constructor_from_mgr(mgr, axes=mgr.axes).__finalize__(self) # type: ignore[return-value] def insert( self, loc: int, column: Hashable, value: Scalar | AnyArrayLike, allow_duplicates: bool | lib.NoDefault = lib.no_default, ) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : Scalar, Series, or array-like Content of the inserted column. allow_duplicates : bool, optional, default lib.no_default Allow duplicate column labels to be created. See Also -------- Index.insert : Insert new item by index. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df col1 col2 0 1 3 1 2 4 >>> df.insert(1, "newcol", [99, 99]) >>> df col1 newcol col2 0 1 99 3 1 2 99 4 >>> df.insert(0, "col1", [100, 100], allow_duplicates=True) >>> df col1 col1 newcol col2 0 100 1 99 3 1 100 2 99 4 Notice that pandas uses index alignment in case of `value` from type `Series`: >>> df.insert(0, "col0", pd.Series([5, 6], index=[1, 2])) >>> df col0 col1 col1 newcol col2 0 NaN 100 1 99 3 1 5.0 100 2 99 4 """ if allow_duplicates is lib.no_default: allow_duplicates = False if allow_duplicates and not self.flags.allows_duplicate_labels: raise ValueError( "Cannot specify 'allow_duplicates=True' when " "'self.flags.allows_duplicate_labels' is False." ) if not allow_duplicates and column in self.columns: # Should this be a different kind of error?? raise ValueError(f"cannot insert {column}, already exists") if not is_integer(loc): raise TypeError("loc must be int") # convert non stdlib ints to satisfy typing checks loc = int(loc) if isinstance(value, DataFrame) and len(value.columns) > 1: raise ValueError( f"Expected a one-dimensional object, got a DataFrame with " f"{len(value.columns)} columns instead." ) elif isinstance(value, DataFrame): value = value.iloc[:, 0] value, refs = self._sanitize_column(value) self._mgr.insert(loc, column, value, refs=refs) def assign(self, **kwargs) -> DataFrame: r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. Later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy(deep=None) for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) return data def _sanitize_column(self, value) -> tuple[ArrayLike, BlockValuesRefs | None]: """ Ensures new columns (which go into the BlockManager as new blocks) are always copied (or a reference is being tracked to them under CoW) and converted into an array. Parameters ---------- value : scalar, Series, or array-like Returns ------- tuple of numpy.ndarray or ExtensionArray and optional BlockValuesRefs """ self._ensure_valid_index(value) # Using a DataFrame would mean coercing values to one dtype assert not isinstance(value, DataFrame) if is_dict_like(value): if not isinstance(value, Series): value = Series(value) return _reindex_for_setitem(value, self.index) if is_list_like(value): com.require_length_match(value, self.index) arr = sanitize_array(value, self.index, copy=True, allow_2d=True) if ( isinstance(value, Index) and value.dtype == "object" and arr.dtype != value.dtype ): # # TODO: Remove kludge in sanitize_array for string mode when enforcing # this deprecation warnings.warn( "Setting an Index with object dtype into a DataFrame will stop " "inferring another dtype in a future version. Cast the Index " "explicitly before setting it into the DataFrame.", FutureWarning, stacklevel=find_stack_level(), ) return arr, None @property def _series(self): return {item: self._ixs(idx, axis=1) for idx, item in enumerate(self.columns)} # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_multi( self, axes: dict[str, Index], copy: bool, fill_value ) -> DataFrame: """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: # Fastpath. By doing two 'take's at once we avoid making an # unnecessary copy. # We only get here with `self._can_fast_transpose`, which (almost) # ensures that self.values is cheap. It may be worth making this # condition more specific. indexer = row_indexer, col_indexer new_values = take_2d_multi(self.values, indexer, fill_value=fill_value) return self._constructor( new_values, index=new_index, columns=new_columns, copy=False ) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @Appender( """ Examples -------- >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6 """ ) @Substitution( klass=_shared_doc_kwargs["klass"], axes_single_arg=_shared_doc_kwargs["axes_single_arg"], extended_summary_sub=" column or", axis_description_sub=", and 1 identifies the columns", see_also_sub=" or columns", ) @Appender(NDFrame.set_axis.__doc__) def set_axis( self, labels, *, axis: Axis = 0, copy: bool | None = None, ) -> DataFrame: return super().set_axis(labels, axis=axis, copy=copy) @doc( NDFrame.reindex, klass=_shared_doc_kwargs["klass"], optional_reindex=_shared_doc_kwargs["optional_reindex"], ) def reindex( self, labels=None, *, index=None, columns=None, axis: Axis | None = None, method: ReindexMethod | None = None, copy: bool | None = None, level: Level | None = None, fill_value: Scalar | None = np.nan, limit: int | None = None, tolerance=None, ) -> DataFrame: return super().reindex( labels=labels, index=index, columns=columns, axis=axis, method=method, copy=copy, level=level, fill_value=fill_value, limit=limit, tolerance=tolerance, ) @overload def drop( self, labels: IndexLabel = ..., *, axis: Axis = ..., index: IndexLabel = ..., columns: IndexLabel = ..., level: Level = ..., inplace: Literal[True], errors: IgnoreRaise = ..., ) -> None: ... @overload def drop( self, labels: IndexLabel = ..., *, axis: Axis = ..., index: IndexLabel = ..., columns: IndexLabel = ..., level: Level = ..., inplace: Literal[False] = ..., errors: IgnoreRaise = ..., ) -> DataFrame: ... @overload def drop( self, labels: IndexLabel = ..., *, axis: Axis = ..., index: IndexLabel = ..., columns: IndexLabel = ..., level: Level = ..., inplace: bool = ..., errors: IgnoreRaise = ..., ) -> DataFrame | None: ... def drop( self, labels: IndexLabel | None = None, *, axis: Axis = 0, index: IndexLabel | None = None, columns: IndexLabel | None = None, level: Level | None = None, inplace: bool = False, errors: IgnoreRaise = "raise", ) -> DataFrame | None: """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by directly specifying index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. See the :ref:`user guide ` for more information about the now unused levels. Parameters ---------- labels : single label or list-like Index or column labels to drop. A tuple will be used as a single label and not treated as a list-like. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If False, return a copy. Otherwise, do operation in place and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame or None Returns DataFrame or None DataFrame with the specified index or column labels removed or None if inplace=True. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['llama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small llama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 Drop a specific index combination from the MultiIndex DataFrame, i.e., drop the combination ``'falcon'`` and ``'weight'``, which deletes only the corresponding row >>> df.drop(index=('falcon', 'weight')) big small llama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big llama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small llama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @overload def rename( self, mapper: Renamer | None = ..., *, index: Renamer | None = ..., columns: Renamer | None = ..., axis: Axis | None = ..., copy: bool | None = ..., inplace: Literal[True], level: Level = ..., errors: IgnoreRaise = ..., ) -> None: ... @overload def rename( self, mapper: Renamer | None = ..., *, index: Renamer | None = ..., columns: Renamer | None = ..., axis: Axis | None = ..., copy: bool | None = ..., inplace: Literal[False] = ..., level: Level = ..., errors: IgnoreRaise = ..., ) -> DataFrame: ... @overload def rename( self, mapper: Renamer | None = ..., *, index: Renamer | None = ..., columns: Renamer | None = ..., axis: Axis | None = ..., copy: bool | None = ..., inplace: bool = ..., level: Level = ..., errors: IgnoreRaise = ..., ) -> DataFrame | None: ... def rename( self, mapper: Renamer | None = None, *, index: Renamer | None = None, columns: Renamer | None = None, axis: Axis | None = None, copy: bool | None = None, inplace: bool = False, level: Level | None = None, errors: IgnoreRaise = "ignore", ) -> DataFrame | None: """ Rename columns or index labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide ` for more. Parameters ---------- mapper : dict-like or function Dict-like or function transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : {0 or 'index', 1 or 'columns'}, default 0 Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. .. note:: The `copy` keyword will change behavior in pandas 3.0. `Copy-on-Write `__ will be enabled by default, which means that all methods with a `copy` keyword will use a lazy copy mechanism to defer the copy and ignore the `copy` keyword. The `copy` keyword will be removed in a future version of pandas. You can already get the future behavior and improvements through enabling copy on write ``pd.options.mode.copy_on_write = True`` inplace : bool, default False Whether to modify the DataFrame rather than creating a new one. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame or None DataFrame with the renamed axis labels or None if ``inplace=True``. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters: >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ return super()._rename( mapper=mapper, index=index, columns=columns, axis=axis, copy=copy, inplace=inplace, level=level, errors=errors, ) def pop(self, item: Hashable) -> Series: """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : label Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN """ return super().pop(item=item) def _replace_columnwise( self, mapping: dict[Hashable, tuple[Any, Any]], inplace: bool, regex ): """ Dispatch to Series.replace column-wise. Parameters ---------- mapping : dict of the form {col: (target, value)} inplace : bool regex : bool or same types as `to_replace` in DataFrame.replace Returns ------- DataFrame or None """ # Operate column-wise res = self if inplace else self.copy(deep=None) ax = self.columns for i, ax_value in enumerate(ax): if ax_value in mapping: ser = self.iloc[:, i] target, value = mapping[ax_value] newobj = ser.replace(target, value, regex=regex) res._iset_item(i, newobj, inplace=inplace) if inplace: return return res.__finalize__(self) @doc(NDFrame.shift, klass=_shared_doc_kwargs["klass"]) def shift( self, periods: int | Sequence[int] = 1, freq: Frequency | None = None, axis: Axis = 0, fill_value: Hashable = lib.no_default, suffix: str | None = None, ) -> DataFrame: if freq is not None and fill_value is not lib.no_default: # GH#53832 warnings.warn( "Passing a 'freq' together with a 'fill_value' silently ignores " "the fill_value and is deprecated. This will raise in a future " "version.", FutureWarning, stacklevel=find_stack_level(), ) fill_value = lib.no_default if self.empty: return self.copy() axis = self._get_axis_number(axis) if is_list_like(periods): periods = cast(Sequence, periods) if axis == 1: raise ValueError( "If `periods` contains multiple shifts, `axis` cannot be 1." ) if len(periods) == 0: raise ValueError("If `periods` is an iterable, it cannot be empty.") from pandas.core.reshape.concat import concat shifted_dataframes = [] for period in periods: if not is_integer(period): raise TypeError( f"Periods must be integer, but {period} is {type(period)}." ) period = cast(int, period) shifted_dataframes.append( super() .shift(periods=period, freq=freq, axis=axis, fill_value=fill_value) .add_suffix(f"{suffix}_{period}" if suffix else f"_{period}") ) return concat(shifted_dataframes, axis=1) elif suffix: raise ValueError("Cannot specify `suffix` if `periods` is an int.") periods = cast(int, periods) ncols = len(self.columns) arrays = self._mgr.arrays if axis == 1 and periods != 0 and ncols > 0 and freq is None: if fill_value is lib.no_default: # We will infer fill_value to match the closest column # Use a column that we know is valid for our column's dtype GH#38434 label = self.columns[0] if periods > 0: result = self.iloc[:, :-periods] for col in range(min(ncols, abs(periods))): # TODO(EA2D): doing this in a loop unnecessary with 2D EAs # Define filler inside loop so we get a copy filler = self.iloc[:, 0].shift(len(self)) result.insert(0, label, filler, allow_duplicates=True) else: result = self.iloc[:, -periods:] for col in range(min(ncols, abs(periods))): # Define filler inside loop so we get a copy filler = self.iloc[:, -1].shift(len(self)) result.insert( len(result.columns), label, filler, allow_duplicates=True ) result.columns = self.columns.copy() return result elif len(arrays) > 1 or ( # If we only have one block and we know that we can't # keep the same dtype (i.e. the _can_hold_element check) # then we can go through the reindex_indexer path # (and avoid casting logic in the Block method). not can_hold_element(arrays[0], fill_value) ): # GH#35488 we need to watch out for multi-block cases # We only get here with fill_value not-lib.no_default nper = abs(periods) nper = min(nper, ncols) if periods > 0: indexer = np.array( [-1] * nper + list(range(ncols - periods)), dtype=np.intp ) else: indexer = np.array( list(range(nper, ncols)) + [-1] * nper, dtype=np.intp ) mgr = self._mgr.reindex_indexer( self.columns, indexer, axis=0, fill_value=fill_value, allow_dups=True, ) res_df = self._constructor_from_mgr(mgr, axes=mgr.axes) return res_df.__finalize__(self, method="shift") else: return self.T.shift(periods=periods, fill_value=fill_value).T return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) @overload def set_index( self, keys, *, drop: bool = ..., append: bool = ..., inplace: Literal[False] = ..., verify_integrity: bool = ..., ) -> DataFrame: ... @overload def set_index( self, keys, *, drop: bool = ..., append: bool = ..., inplace: Literal[True], verify_integrity: bool = ..., ) -> None: ... def set_index( self, keys, *, drop: bool = True, append: bool = False, inplace: bool = False, verify_integrity: bool = False, ) -> DataFrame | None: """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Whether to modify the DataFrame rather than creating a new one. verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame or None Changed row labels or None if ``inplace=True``. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") self._check_inplace_and_allows_duplicate_labels(inplace) if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing: list[Hashable] = [] for col in keys: if isinstance(col, (Index, Series, np.ndarray, list, abc.Iterator)): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError as err: raise TypeError( f"{err_msg}. Received column of type {type(col)}" ) from err else: if not found: missing.append(col) if missing: raise KeyError(f"None of {missing} are in the columns") if inplace: frame = self else: # GH 49473 Use "lazy copy" with Copy-on-Write frame = self.copy(deep=None) arrays: list[Index] = [] names: list[Hashable] = [] if append: names = list(self.index.names) if isinstance(self.index, MultiIndex): arrays.extend( self.index._get_level_values(i) for i in range(self.index.nlevels) ) else: arrays.append(self.index) to_remove: list[Hashable] = [] for col in keys: if isinstance(col, MultiIndex): arrays.extend(col._get_level_values(n) for n in range(col.nlevels)) names.extend(col.names) elif isinstance(col, (Index, Series)): # if Index then not MultiIndex (treated above) # error: Argument 1 to "append" of "list" has incompatible type # "Union[Index, Series]"; expected "Index" arrays.append(col) # type: ignore[arg-type] names.append(col.name) elif isinstance(col, (list, np.ndarray)): # error: Argument 1 to "append" of "list" has incompatible type # "Union[List[Any], ndarray]"; expected "Index" arrays.append(col) # type: ignore[arg-type] names.append(None) elif isinstance(col, abc.Iterator): # error: Argument 1 to "append" of "list" has incompatible type # "List[Any]"; expected "Index" arrays.append(list(col)) # type: ignore[arg-type] names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( f"Length mismatch: Expected {len(self)} rows, " f"received array of length {len(arrays[-1])}" ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError(f"Index has duplicate keys: {duplicates}") # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame return None @overload def reset_index( self, level: IndexLabel = ..., *, drop: bool = ..., inplace: Literal[False] = ..., col_level: Hashable = ..., col_fill: Hashable = ..., allow_duplicates: bool | lib.NoDefault = ..., names: Hashable | Sequence[Hashable] | None = None, ) -> DataFrame: ... @overload def reset_index( self, level: IndexLabel = ..., *, drop: bool = ..., inplace: Literal[True], col_level: Hashable = ..., col_fill: Hashable = ..., allow_duplicates: bool | lib.NoDefault = ..., names: Hashable | Sequence[Hashable] | None = None, ) -> None: ... @overload def reset_index( self, level: IndexLabel = ..., *, drop: bool = ..., inplace: bool = ..., col_level: Hashable = ..., col_fill: Hashable = ..., allow_duplicates: bool | lib.NoDefault = ..., names: Hashable | Sequence[Hashable] | None = None, ) -> DataFrame | None: ... def reset_index( self, level: IndexLabel | None = None, *, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Hashable = "", allow_duplicates: bool | lib.NoDefault = lib.no_default, names: Hashable | Sequence[Hashable] | None = None, ) -> DataFrame | None: """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Whether to modify the DataFrame rather than creating a new one. col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. allow_duplicates : bool, optional, default lib.no_default Allow duplicate column labels to be created. .. versionadded:: 1.5.0 names : int, str or 1-dimensional list, default None Using the given string, rename the DataFrame column which contains the index data. If the DataFrame has a MultiIndex, this has to be a list or tuple with length equal to the number of levels. .. versionadded:: 1.5.0 Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... (24.0, 'fly'), ... (80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump Using the `names` parameter, choose a name for the index column: >>> df.reset_index(names=['classes', 'names']) classes names speed species max type 0 bird falcon 389.0 fly 1 bird parrot 24.0 fly 2 mammal lion 80.5 run 3 mammal monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") self._check_inplace_and_allows_duplicate_labels(inplace) if inplace: new_obj = self else: new_obj = self.copy(deep=None) if allow_duplicates is not lib.no_default: allow_duplicates = validate_bool_kwarg(allow_duplicates, "allow_duplicates") new_index = default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: to_insert: Iterable[tuple[Any, Any | None]] default = "index" if "index" not in self else "level_0" names = self.index._get_default_index_names(names, default) if isinstance(self.index, MultiIndex): to_insert = zip(self.index.levels, self.index.codes) else: to_insert = ((self.index, None),) multi_col = isinstance(self.columns, MultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if level is not None and i not in level: continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " f"with incomplete column name {name}" ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = lev._values if level_values.dtype == np.object_: level_values = lib.maybe_convert_objects(level_values) if lab is not None: # if we have the codes, extract the values with a mask level_values = algorithms.take( level_values, lab, allow_fill=True, fill_value=lev._na_value ) new_obj.insert( 0, name, level_values, allow_duplicates=allow_duplicates, ) new_obj.index = new_index if not inplace: return new_obj return None # ---------------------------------------------------------------------- # Reindex-based selection methods @doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) def isna(self) -> DataFrame: res_mgr = self._mgr.isna(func=isna) result = self._constructor_from_mgr(res_mgr, axes=res_mgr.axes) return result.__finalize__(self, method="isna") @doc(NDFrame.isna, klass=_shared_doc_kwargs["klass"]) def isnull(self) -> DataFrame: """ DataFrame.isnull is an alias for DataFrame.isna. """ return self.isna() @doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) def notna(self) -> DataFrame: return ~self.isna() @doc(NDFrame.notna, klass=_shared_doc_kwargs["klass"]) def notnull(self) -> DataFrame: """ DataFrame.notnull is an alias for DataFrame.notna. """ return ~self.isna() @overload def dropna( self, *, axis: Axis = ..., how: AnyAll | lib.NoDefault = ..., thresh: int | lib.NoDefault = ..., subset: IndexLabel = ..., inplace: Literal[False] = ..., ignore_index: bool = ..., ) -> DataFrame: ... @overload def dropna( self, *, axis: Axis = ..., how: AnyAll | lib.NoDefault = ..., thresh: int | lib.NoDefault = ..., subset: IndexLabel = ..., inplace: Literal[True], ignore_index: bool = ..., ) -> None: ... def dropna( self, *, axis: Axis = 0, how: AnyAll | lib.NoDefault = lib.no_default, thresh: int | lib.NoDefault = lib.no_default, subset: IndexLabel | None = None, inplace: bool = False, ignore_index: bool = False, ) -> DataFrame | None: """ Remove missing values. See the :ref:`User Guide ` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. Cannot be combined with how. subset : column label or sequence of labels, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False Whether to modify the DataFrame rather than creating a new one. ignore_index : bool, default ``False`` If ``True``, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 2.0.0 Returns ------- DataFrame or None DataFrame with NA entries dropped from it or None if ``inplace=True``. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT """ if (how is not lib.no_default) and (thresh is not lib.no_default): raise TypeError( "You cannot set both the how and thresh arguments at the same time." ) if how is lib.no_default: how = "any" inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 raise TypeError("supplying multiple axes to axis is no longer supported.") axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: # subset needs to be list if not is_list_like(subset): subset = [subset] ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(np.array(subset)[check].tolist()) agg_obj = self.take(indices, axis=agg_axis) if thresh is not lib.no_default: count = agg_obj.count(axis=agg_axis) mask = count >= thresh elif how == "any": # faster equivalent to 'agg_obj.count(agg_axis) == self.shape[agg_axis]' mask = notna(agg_obj).all(axis=agg_axis, bool_only=False) elif how == "all": # faster equivalent to 'agg_obj.count(agg_axis) > 0' mask = notna(agg_obj).any(axis=agg_axis, bool_only=False) else: raise ValueError(f"invalid how option: {how}") if np.all(mask): result = self.copy(deep=None) else: result = self.loc(axis=axis)[mask] if ignore_index: result.index = default_index(len(result)) if not inplace: return result self._update_inplace(result) return None @overload def drop_duplicates( self, subset: Hashable | Sequence[Hashable] | None = ..., *, keep: DropKeep = ..., inplace: Literal[True], ignore_index: bool = ..., ) -> None: ... @overload def drop_duplicates( self, subset: Hashable | Sequence[Hashable] | None = ..., *, keep: DropKeep = ..., inplace: Literal[False] = ..., ignore_index: bool = ..., ) -> DataFrame: ... @overload def drop_duplicates( self, subset: Hashable | Sequence[Hashable] | None = ..., *, keep: DropKeep = ..., inplace: bool = ..., ignore_index: bool = ..., ) -> DataFrame | None: ... def drop_duplicates( self, subset: Hashable | Sequence[Hashable] | None = None, *, keep: DropKeep = "first", inplace: bool = False, ignore_index: bool = False, ) -> DataFrame | None: """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', ``False``}, default 'first' Determines which duplicates (if any) to keep. - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` Whether to modify the DataFrame rather than creating a new one. ignore_index : bool, default ``False`` If ``True``, the resulting axis will be labeled 0, 1, …, n - 1. Returns ------- DataFrame or None DataFrame with duplicates removed or None if ``inplace=True``. See Also -------- DataFrame.value_counts: Count unique combinations of columns. Examples -------- Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, it removes duplicate rows based on all columns. >>> df.drop_duplicates() brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 To remove duplicates on specific column(s), use ``subset``. >>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 To remove duplicates and keep last occurrences, use ``keep``. >>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Indomie pack 5.0 """ if self.empty: return self.copy(deep=None) inplace = validate_bool_kwarg(inplace, "inplace") ignore_index = validate_bool_kwarg(ignore_index, "ignore_index") result = self[-self.duplicated(subset, keep=keep)] if ignore_index: result.index = default_index(len(result)) if inplace: self._update_inplace(result) return None else: return result def duplicated( self, subset: Hashable | Sequence[Hashable] | None = None, keep: DropKeep = "first", ) -> Series: """ Return boolean Series denoting duplicate rows. Considering certain columns is optional. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to mark. - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series Boolean series for each duplicated rows. See Also -------- Index.duplicated : Equivalent method on index. Series.duplicated : Equivalent method on Series. Series.drop_duplicates : Remove duplicate values from Series. DataFrame.drop_duplicates : Remove duplicate values from DataFrame. Examples -------- Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, for each set of duplicated values, the first occurrence is set on False and all others on True. >>> df.duplicated() 0 False 1 True 2 False 3 False 4 False dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True. >>> df.duplicated(keep='last') 0 True 1 False 2 False 3 False 4 False dtype: bool By setting ``keep`` on False, all duplicates are True. >>> df.duplicated(keep=False) 0 True 1 True 2 False 3 False 4 False dtype: bool To find duplicates on specific column(s), use ``subset``. >>> df.duplicated(subset=['brand']) 0 False 1 True 2 False 3 True 4 True dtype: bool """ if self.empty: return self._constructor_sliced(dtype=bool) def f(vals) -> tuple[np.ndarray, int]: labels, shape = algorithms.factorize(vals, size_hint=len(self)) return labels.astype("i8", copy=False), len(shape) if subset is None: # https://github.com/pandas-dev/pandas/issues/28770 # Incompatible types in assignment (expression has type "Index", variable # has type "Sequence[Any]") subset = self.columns # type: ignore[assignment] elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # needed for mypy since can't narrow types using np.iterable subset = cast(Sequence, subset) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = set(subset) - set(self.columns) if diff: raise KeyError(Index(diff)) if len(subset) == 1 and self.columns.is_unique: # GH#45236 This is faster than get_group_index below result = self[subset[0]].duplicated(keep) result.name = None else: vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, tuple(shape), sort=False, xnull=False) result = self._constructor_sliced(duplicated(ids, keep), index=self.index) return result.__finalize__(self, method="duplicated") # ---------------------------------------------------------------------- # Sorting # error: Signature of "sort_values" incompatible with supertype "NDFrame" @overload # type: ignore[override] def sort_values( self, by: IndexLabel, *, axis: Axis = ..., ascending=..., inplace: Literal[False] = ..., kind: SortKind = ..., na_position: NaPosition = ..., ignore_index: bool = ..., key: ValueKeyFunc = ..., ) -> DataFrame: ... @overload def sort_values( self, by: IndexLabel, *, axis: Axis = ..., ascending=..., inplace: Literal[True], kind: SortKind = ..., na_position: str = ..., ignore_index: bool = ..., key: ValueKeyFunc = ..., ) -> None: ... def sort_values( self, by: IndexLabel, *, axis: Axis = 0, ascending: bool | list[bool] | tuple[bool, ...] = True, inplace: bool = False, kind: SortKind = "quicksort", na_position: str = "last", ignore_index: bool = False, key: ValueKeyFunc | None = None, ) -> DataFrame | None: """ Sort by the values along either axis. Parameters ---------- by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels. axis : "{0 or 'index', 1 or 'columns'}", default 0 Axis to be sorted. ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. `mergesort` and `stable` are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. key : callable, optional Apply the key function to the values before sorting. This is similar to the `key` argument in the builtin :meth:`sorted` function, with the notable difference that this `key` function should be *vectorized*. It should expect a ``Series`` and return a Series with the same shape as the input. It will be applied to each column in `by` independently. Returns ------- DataFrame or None DataFrame with sorted values or None if ``inplace=True``. See Also -------- DataFrame.sort_index : Sort a DataFrame by the index. Series.sort_values : Similar method for a Series. Examples -------- >>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... 'col4': ['a', 'B', 'c', 'D', 'e', 'F'] ... }) >>> df col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 NaN 8 4 D Sort by multiple columns >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 col4 1 A 1 1 B 0 A 2 0 a 2 B 9 9 c 5 C 4 3 F 4 D 7 2 e 3 NaN 8 4 D Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 col4 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B 3 NaN 8 4 D Putting NAs first >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 col4 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F 2 B 9 9 c 0 A 2 0 a 1 A 1 1 B Sorting with a key function >>> df.sort_values(by='col4', key=lambda col: col.str.lower()) col1 col2 col3 col4 0 A 2 0 a 1 A 1 1 B 2 B 9 9 c 3 NaN 8 4 D 4 D 7 2 e 5 C 4 3 F Natural sort with the key argument, using the `natsort ` package. >>> df = pd.DataFrame({ ... "time": ['0hr', '128hr', '72hr', '48hr', '96hr'], ... "value": [10, 20, 30, 40, 50] ... }) >>> df time value 0 0hr 10 1 128hr 20 2 72hr 30 3 48hr 40 4 96hr 50 >>> from natsort import index_natsorted >>> df.sort_values( ... by="time", ... key=lambda x: np.argsort(index_natsorted(df["time"])) ... ) time value 0 0hr 10 3 48hr 40 2 72hr 30 4 96hr 50 1 128hr 20 """ inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) ascending = validate_ascending(ascending) if not isinstance(by, list): by = [by] # error: Argument 1 to "len" has incompatible type "Union[bool, List[bool]]"; # expected "Sized" if is_sequence(ascending) and ( len(by) != len(ascending) # type: ignore[arg-type] ): # error: Argument 1 to "len" has incompatible type "Union[bool, # List[bool]]"; expected "Sized" raise ValueError( f"Length of ascending ({len(ascending)})" # type: ignore[arg-type] f" != length of by ({len(by)})" ) if len(by) > 1: keys = [self._get_label_or_level_values(x, axis=axis) for x in by] # need to rewrap columns in Series to apply key function if key is not None: # error: List comprehension has incompatible type List[Series]; # expected List[ndarray] keys = [ Series(k, name=name) # type: ignore[misc] for (k, name) in zip(keys, by) ] indexer = lexsort_indexer( keys, orders=ascending, na_position=na_position, key=key ) elif len(by): # len(by) == 1 k = self._get_label_or_level_values(by[0], axis=axis) # need to rewrap column in Series to apply key function if key is not None: # error: Incompatible types in assignment (expression has type # "Series", variable has type "ndarray") k = Series(k, name=by[0]) # type: ignore[assignment] if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position, key=key ) else: if inplace: return self._update_inplace(self) else: return self.copy(deep=None) if is_range_indexer(indexer, len(indexer)): result = self.copy(deep=(not inplace and not using_copy_on_write())) if ignore_index: result.index = default_index(len(result)) if inplace: return self._update_inplace(result) else: return result new_data = self._mgr.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if ignore_index: new_data.set_axis( self._get_block_manager_axis(axis), default_index(len(indexer)) ) result = self._constructor_from_mgr(new_data, axes=new_data.axes) if inplace: return self._update_inplace(result) else: return result.__finalize__(self, method="sort_values") @overload def sort_index( self, *, axis: Axis = ..., level: IndexLabel = ..., ascending: bool | Sequence[bool] = ..., inplace: Literal[True], kind: SortKind = ..., na_position: NaPosition = ..., sort_remaining: bool = ..., ignore_index: bool = ..., key: IndexKeyFunc = ..., ) -> None: ... @overload def sort_index( self, *, axis: Axis = ..., level: IndexLabel = ..., ascending: bool | Sequence[bool] = ..., inplace: Literal[False] = ..., kind: SortKind = ..., na_position: NaPosition = ..., sort_remaining: bool = ..., ignore_index: bool = ..., key: IndexKeyFunc = ..., ) -> DataFrame: ... @overload def sort_index( self, *, axis: Axis = ..., level: IndexLabel = ..., ascending: bool | Sequence[bool] = ..., inplace: bool = ..., kind: SortKind = ..., na_position: NaPosition = ..., sort_remaining: bool = ..., ignore_index: bool = ..., key: IndexKeyFunc = ..., ) -> DataFrame | None: ... def sort_index( self, *, axis: Axis = 0, level: IndexLabel | None = None, ascending: bool | Sequence[bool] = True, inplace: bool = False, kind: SortKind = "quicksort", na_position: NaPosition = "last", sort_remaining: bool = True, ignore_index: bool = False, key: IndexKeyFunc | None = None, ) -> DataFrame | None: """ Sort object by labels (along an axis). Returns a new DataFrame sorted by label if `inplace` argument is ``False``, otherwise updates the original DataFrame and returns None. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns. level : int or level name or list of ints or list of level names If not None, sort on values in specified index level(s). ascending : bool or list-like of bools, default True Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually. inplace : bool, default False Whether to modify the DataFrame rather than creating a new one. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. `mergesort` and `stable` are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. key : callable, optional If not None, apply the key function to the index values before sorting. This is similar to the `key` argument in the builtin :meth:`sorted` function, with the notable difference that this `key` function should be *vectorized*. It should expect an ``Index`` and return an ``Index`` of the same shape. For MultiIndex inputs, the key is applied *per level*. Returns ------- DataFrame or None The original DataFrame sorted by the labels or None if ``inplace=True``. See Also -------- Series.sort_index : Sort Series by the index. DataFrame.sort_values : Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> df = pd.DataFrame([1, 2, 3, 4, 5], index=[100, 29, 234, 1, 150], ... columns=['A']) >>> df.sort_index() A 1 4 29 2 100 1 150 5 234 3 By default, it sorts in ascending order, to sort in descending order, use ``ascending=False`` >>> df.sort_index(ascending=False) A 234 3 150 5 100 1 29 2 1 4 A key function can be specified which is applied to the index before sorting. For a ``MultiIndex`` this is applied to each level separately. >>> df = pd.DataFrame({"a": [1, 2, 3, 4]}, index=['A', 'b', 'C', 'd']) >>> df.sort_index(key=lambda x: x.str.lower()) a A 1 b 2 C 3 d 4 """ return super().sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, kind=kind, na_position=na_position, sort_remaining=sort_remaining, ignore_index=ignore_index, key=key, ) def value_counts( self, subset: IndexLabel | None = None, normalize: bool = False, sort: bool = True, ascending: bool = False, dropna: bool = True, ) -> Series: """ Return a Series containing the frequency of each distinct row in the Dataframe. Parameters ---------- subset : label or list of labels, optional Columns to use when counting unique combinations. normalize : bool, default False Return proportions rather than frequencies. sort : bool, default True Sort by frequencies when True. Sort by DataFrame column values when False. ascending : bool, default False Sort in ascending order. dropna : bool, default True Don't include counts of rows that contain NA values. .. versionadded:: 1.3.0 Returns ------- Series See Also -------- Series.value_counts: Equivalent method on Series. Notes ----- The returned Series will have a MultiIndex with one level per input column but an Index (non-multi) for a single label. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 >>> df.value_counts() num_legs num_wings 4 0 2 2 2 1 6 0 1 Name: count, dtype: int64 >>> df.value_counts(sort=False) num_legs num_wings 2 2 1 4 0 2 6 0 1 Name: count, dtype: int64 >>> df.value_counts(ascending=True) num_legs num_wings 2 2 1 6 0 1 4 0 2 Name: count, dtype: int64 >>> df.value_counts(normalize=True) num_legs num_wings 4 0 0.50 2 2 0.25 6 0 0.25 Name: proportion, dtype: float64 With `dropna` set to `False` we can also count rows with NA values. >>> df = pd.DataFrame({'first_name': ['John', 'Anne', 'John', 'Beth'], ... 'middle_name': ['Smith', pd.NA, pd.NA, 'Louise']}) >>> df first_name middle_name 0 John Smith 1 Anne 2 John 3 Beth Louise >>> df.value_counts() first_name middle_name Beth Louise 1 John Smith 1 Name: count, dtype: int64 >>> df.value_counts(dropna=False) first_name middle_name Anne NaN 1 Beth Louise 1 John Smith 1 NaN 1 Name: count, dtype: int64 >>> df.value_counts("first_name") first_name John 2 Anne 1 Beth 1 Name: count, dtype: int64 """ if subset is None: subset = self.columns.tolist() name = "proportion" if normalize else "count" counts = self.groupby(subset, dropna=dropna, observed=False)._grouper.size() counts.name = name if sort: counts = counts.sort_values(ascending=ascending) if normalize: counts /= counts.sum() # Force MultiIndex for a list_like subset with a single column if is_list_like(subset) and len(subset) == 1: # type: ignore[arg-type] counts.index = MultiIndex.from_arrays( [counts.index], names=[counts.index.name] ) return counts def nlargest( self, n: int, columns: IndexLabel, keep: NsmallestNlargestKeep = "first" ) -> DataFrame: """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : prioritize the first occurrence(s) - ``last`` : prioritize the last occurrence(s) - ``all`` : keep all the ties of the smallest item even if it means selecting more than ``n`` items. Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, the number of element kept can go beyond ``n`` if there are duplicate values for the smallest element, all the ties are kept: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN However, ``nlargest`` does not keep ``n`` distinct largest elements: >>> df.nlargest(5, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return selectn.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest( self, n: int, columns: IndexLabel, keep: NsmallestNlargestKeep = "first" ) -> DataFrame: """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : keep all the ties of the largest item even if it means selecting more than ``n`` items. Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 337000, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 337000 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "population". >>> df.nsmallest(3, 'population') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 337000 182 NR When using ``keep='all'``, the number of element kept can go beyond ``n`` if there are duplicate values for the largest element, all the ties are kept. >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS Nauru 337000 182 NR However, ``nsmallest`` does not keep ``n`` distinct smallest elements: >>> df.nsmallest(4, 'population', keep='all') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS Nauru 337000 182 NR To order by the smallest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Nauru 337000 182 NR """ return selectn.SelectNFrame(self, n=n, keep=keep, columns=columns).nsmallest() @doc( Series.swaplevel, klass=_shared_doc_kwargs["klass"], extra_params=dedent( """axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to swap levels on. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.""" ), examples=dedent( """\ Examples -------- >>> df = pd.DataFrame( ... {"Grade": ["A", "B", "A", "C"]}, ... index=[ ... ["Final exam", "Final exam", "Coursework", "Coursework"], ... ["History", "Geography", "History", "Geography"], ... ["January", "February", "March", "April"], ... ], ... ) >>> df Grade Final exam History January A Geography February B Coursework History March A Geography April C In the following example, we will swap the levels of the indices. Here, we will swap the levels column-wise, but levels can be swapped row-wise in a similar manner. Note that column-wise is the default behaviour. By not supplying any arguments for i and j, we swap the last and second to last indices. >>> df.swaplevel() Grade Final exam January History A February Geography B Coursework March History A April Geography C By supplying one argument, we can choose which index to swap the last index with. We can for example swap the first index with the last one as follows. >>> df.swaplevel(0) Grade January History Final exam A February Geography Final exam B March History Coursework A April Geography Coursework C We can also define explicitly which indices we want to swap by supplying values for both i and j. Here, we for example swap the first and second indices. >>> df.swaplevel(0, 1) Grade History Final exam January A Geography Final exam February B History Coursework March A Geography Coursework April C""" ), ) def swaplevel(self, i: Axis = -2, j: Axis = -1, axis: Axis = 0) -> DataFrame: result = self.copy(deep=None) axis = self._get_axis_number(axis) if not isinstance(result._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError("Can only swap levels on a hierarchical axis.") if axis == 0: assert isinstance(result.index, MultiIndex) result.index = result.index.swaplevel(i, j) else: assert isinstance(result.columns, MultiIndex) result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order: Sequence[int | str], axis: Axis = 0) -> DataFrame: """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : {0 or 'index', 1 or 'columns'}, default 0 Where to reorder levels. Returns ------- DataFrame Examples -------- >>> data = { ... "class": ["Mammals", "Mammals", "Reptiles"], ... "diet": ["Omnivore", "Carnivore", "Carnivore"], ... "species": ["Humans", "Dogs", "Snakes"], ... } >>> df = pd.DataFrame(data, columns=["class", "diet", "species"]) >>> df = df.set_index(["class", "diet"]) >>> df species class diet Mammals Omnivore Humans Carnivore Dogs Reptiles Carnivore Snakes Let's reorder the levels of the index: >>> df.reorder_levels(["diet", "class"]) species diet class Omnivore Mammals Humans Carnivore Mammals Dogs Reptiles Snakes """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy(deep=None) if axis == 0: assert isinstance(result.index, MultiIndex) result.index = result.index.reorder_levels(order) else: assert isinstance(result.columns, MultiIndex) result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic Methods def _cmp_method(self, other, op): axis: Literal[1] = 1 # only relevant for Series other case self, other = self._align_for_op(other, axis, flex=False, level=None) # See GH#4537 for discussion of scalar op behavior new_data = self._dispatch_frame_op(other, op, axis=axis) return self._construct_result(new_data) def _arith_method(self, other, op): if self._should_reindex_frame_op(other, op, 1, None, None): return self._arith_method_with_reindex(other, op) axis: Literal[1] = 1 # only relevant for Series other case other = ops.maybe_prepare_scalar_for_op(other, (self.shape[axis],)) self, other = self._align_for_op(other, axis, flex=True, level=None) with np.errstate(all="ignore"): new_data = self._dispatch_frame_op(other, op, axis=axis) return self._construct_result(new_data) _logical_method = _arith_method def _dispatch_frame_op( self, right, func: Callable, axis: AxisInt | None = None ) -> DataFrame: """ Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation. Parameters ---------- right : scalar, Series, or DataFrame func : arithmetic or comparison operator axis : {None, 0, 1} Returns ------- DataFrame Notes ----- Caller is responsible for setting np.errstate where relevant. """ # Get the appropriate array-op to apply to each column/block's values. array_op = ops.get_array_op(func) right = lib.item_from_zerodim(right) if not is_list_like(right): # i.e. scalar, faster than checking np.ndim(right) == 0 bm = self._mgr.apply(array_op, right=right) return self._constructor_from_mgr(bm, axes=bm.axes) elif isinstance(right, DataFrame): assert self.index.equals(right.index) assert self.columns.equals(right.columns) # TODO: The previous assertion `assert right._indexed_same(self)` # fails in cases with empty columns reached via # _frame_arith_method_with_reindex # TODO operate_blockwise expects a manager of the same type bm = self._mgr.operate_blockwise( # error: Argument 1 to "operate_blockwise" of "ArrayManager" has # incompatible type "Union[ArrayManager, BlockManager]"; expected # "ArrayManager" # error: Argument 1 to "operate_blockwise" of "BlockManager" has # incompatible type "Union[ArrayManager, BlockManager]"; expected # "BlockManager" right._mgr, # type: ignore[arg-type] array_op, ) return self._constructor_from_mgr(bm, axes=bm.axes) elif isinstance(right, Series) and axis == 1: # axis=1 means we want to operate row-by-row assert right.index.equals(self.columns) right = right._values # maybe_align_as_frame ensures we do not have an ndarray here assert not isinstance(right, np.ndarray) arrays = [ array_op(_left, _right) for _left, _right in zip(self._iter_column_arrays(), right) ] elif isinstance(right, Series): assert right.index.equals(self.index) right = right._values arrays = [array_op(left, right) for left in self._iter_column_arrays()] else: raise NotImplementedError(right) return type(self)._from_arrays( arrays, self.columns, self.index, verify_integrity=False ) def _combine_frame(self, other: DataFrame, func, fill_value=None): # at this point we have `self._indexed_same(other)` if fill_value is None: # since _arith_op may be called in a loop, avoid function call # overhead if possible by doing this check once _arith_op = func else: def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) new_data = self._dispatch_frame_op(other, _arith_op) return new_data def _arith_method_with_reindex(self, right: DataFrame, op) -> DataFrame: """ For DataFrame-with-DataFrame operations that require reindexing, operate only on shared columns, then reindex. Parameters ---------- right : DataFrame op : binary operator Returns ------- DataFrame """ left = self # GH#31623, only operate on shared columns cols, lcols, rcols = left.columns.join( right.columns, how="inner", level=None, return_indexers=True ) new_left = left.iloc[:, lcols] new_right = right.iloc[:, rcols] result = op(new_left, new_right) # Do the join on the columns instead of using left._align_for_op # to avoid constructing two potentially large/sparse DataFrames join_columns, _, _ = left.columns.join( right.columns, how="outer", level=None, return_indexers=True ) if result.columns.has_duplicates: # Avoid reindexing with a duplicate axis. # https://github.com/pandas-dev/pandas/issues/35194 indexer, _ = result.columns.get_indexer_non_unique(join_columns) indexer = algorithms.unique1d(indexer) result = result._reindex_with_indexers( {1: [join_columns, indexer]}, allow_dups=True ) else: result = result.reindex(join_columns, axis=1) return result def _should_reindex_frame_op(self, right, op, axis: int, fill_value, level) -> bool: """ Check if this is an operation between DataFrames that will need to reindex. """ if op is operator.pow or op is roperator.rpow: # GH#32685 pow has special semantics for operating with null values return False if not isinstance(right, DataFrame): return False if fill_value is None and level is None and axis == 1: # TODO: any other cases we should handle here? # Intersection is always unique so we have to check the unique columns left_uniques = self.columns.unique() right_uniques = right.columns.unique() cols = left_uniques.intersection(right_uniques) if len(cols) and not ( len(cols) == len(left_uniques) and len(cols) == len(right_uniques) ): # TODO: is there a shortcut available when len(cols) == 0? return True return False def _align_for_op( self, other, axis: AxisInt, flex: bool | None = False, level: Level | None = None, ): """ Convert rhs to meet lhs dims if input is list, tuple or np.ndarray. Parameters ---------- left : DataFrame right : Any axis : int flex : bool or None, default False Whether this is a flex op, in which case we reindex. None indicates not to check for alignment. level : int or level name, default None Returns ------- left : DataFrame right : Any """ left, right = self, other def to_series(right): msg = ( "Unable to coerce to Series, " "length must be {req_len}: given {given_len}" ) # pass dtype to avoid doing inference, which would break consistency # with Index/Series ops dtype = None if getattr(right, "dtype", None) == object: # can't pass right.dtype unconditionally as that would break on e.g. # datetime64[h] ndarray dtype = object if axis == 0: if len(left.index) != len(right): raise ValueError( msg.format(req_len=len(left.index), given_len=len(right)) ) right = left._constructor_sliced(right, index=left.index, dtype=dtype) else: if len(left.columns) != len(right): raise ValueError( msg.format(req_len=len(left.columns), given_len=len(right)) ) right = left._constructor_sliced(right, index=left.columns, dtype=dtype) return right if isinstance(right, np.ndarray): if right.ndim == 1: right = to_series(right) elif right.ndim == 2: # We need to pass dtype=right.dtype to retain object dtype # otherwise we lose consistency with Index and array ops dtype = None if right.dtype == object: # can't pass right.dtype unconditionally as that would break on e.g. # datetime64[h] ndarray dtype = object if right.shape == left.shape: right = left._constructor( right, index=left.index, columns=left.columns, dtype=dtype ) elif right.shape[0] == left.shape[0] and right.shape[1] == 1: # Broadcast across columns right = np.broadcast_to(right, left.shape) right = left._constructor( right, index=left.index, columns=left.columns, dtype=dtype ) elif right.shape[1] == left.shape[1] and right.shape[0] == 1: # Broadcast along rows right = to_series(right[0, :]) else: raise ValueError( "Unable to coerce to DataFrame, shape " f"must be {left.shape}: given {right.shape}" ) elif right.ndim > 2: raise ValueError( "Unable to coerce to Series/DataFrame, " f"dimension must be <= 2: {right.shape}" ) elif is_list_like(right) and not isinstance(right, (Series, DataFrame)): # GH#36702. Raise when attempting arithmetic with list of array-like. if any(is_array_like(el) for el in right): raise ValueError( f"Unable to coerce list of {type(right[0])} to Series/DataFrame" ) # GH#17901 right = to_series(right) if flex is not None and isinstance(right, DataFrame): if not left._indexed_same(right): if flex: left, right = left.align( right, join="outer", level=level, copy=False ) else: raise ValueError( "Can only compare identically-labeled (both index and columns) " "DataFrame objects" ) elif isinstance(right, Series): # axis=1 is default for DataFrame-with-Series op axis = axis if axis is not None else 1 if not flex: if not left.axes[axis].equals(right.index): raise ValueError( "Operands are not aligned. Do " "`left, right = left.align(right, axis=1, copy=False)` " "before operating." ) left, right = left.align( right, join="outer", axis=axis, level=level, copy=False, ) right = left._maybe_align_series_as_frame(right, axis) return left, right def _maybe_align_series_as_frame(self, series: Series, axis: AxisInt): """ If the Series operand is not EA-dtype, we can broadcast to 2D and operate blockwise. """ rvalues = series._values if not isinstance(rvalues, np.ndarray): # TODO(EA2D): no need to special-case with 2D EAs if rvalues.dtype in ("datetime64[ns]", "timedelta64[ns]"): # We can losslessly+cheaply cast to ndarray rvalues = np.asarray(rvalues) else: return series if axis == 0: rvalues = rvalues.reshape(-1, 1) else: rvalues = rvalues.reshape(1, -1) rvalues = np.broadcast_to(rvalues, self.shape) # pass dtype to avoid doing inference return self._constructor( rvalues, index=self.index, columns=self.columns, dtype=rvalues.dtype, ) def _flex_arith_method( self, other, op, *, axis: Axis = "columns", level=None, fill_value=None ): axis = self._get_axis_number(axis) if axis is not None else 1 if self._should_reindex_frame_op(other, op, axis, fill_value, level): return self._arith_method_with_reindex(other, op) if isinstance(other, Series) and fill_value is not None: # TODO: We could allow this in cases where we end up going # through the DataFrame path raise NotImplementedError(f"fill_value {fill_value} not supported.") other = ops.maybe_prepare_scalar_for_op(other, self.shape) self, other = self._align_for_op(other, axis, flex=True, level=level) with np.errstate(all="ignore"): if isinstance(other, DataFrame): # Another DataFrame new_data = self._combine_frame(other, op, fill_value) elif isinstance(other, Series): new_data = self._dispatch_frame_op(other, op, axis=axis) else: # in this case we always have `np.ndim(other) == 0` if fill_value is not None: self = self.fillna(fill_value) new_data = self._dispatch_frame_op(other, op) return self._construct_result(new_data) def _construct_result(self, result) -> DataFrame: """ Wrap the result of an arithmetic, comparison, or logical operation. Parameters ---------- result : DataFrame Returns ------- DataFrame """ out = self._constructor(result, copy=False).__finalize__(self) # Pin columns instead of passing to constructor for compat with # non-unique columns case out.columns = self.columns out.index = self.index return out def __divmod__(self, other) -> tuple[DataFrame, DataFrame]: # Naive implementation, room for optimization div = self // other mod = self - div * other return div, mod def __rdivmod__(self, other) -> tuple[DataFrame, DataFrame]: # Naive implementation, room for optimization div = other // self mod = other - div * self return div, mod def _flex_cmp_method(self, other, op, *, axis: Axis = "columns", level=None): axis = self._get_axis_number(axis) if axis is not None else 1 self, other = self._align_for_op(other, axis, flex=True, level=level) new_data = self._dispatch_frame_op(other, op, axis=axis) return self._construct_result(new_data) @Appender(ops.make_flex_doc("eq", "dataframe")) def eq(self, other, axis: Axis = "columns", level=None) -> DataFrame: return self._flex_cmp_method(other, operator.eq, axis=axis, level=level) @Appender(ops.make_flex_doc("ne", "dataframe")) def ne(self, other, axis: Axis = "columns", level=None) -> DataFrame: return self._flex_cmp_method(other, operator.ne, axis=axis, level=level) @Appender(ops.make_flex_doc("le", "dataframe")) def le(self, other, axis: Axis = "columns", level=None) -> DataFrame: return self._flex_cmp_method(other, operator.le, axis=axis, level=level) @Appender(ops.make_flex_doc("lt", "dataframe")) def lt(self, other, axis: Axis = "columns", level=None) -> DataFrame: return self._flex_cmp_method(other, operator.lt, axis=axis, level=level) @Appender(ops.make_flex_doc("ge", "dataframe")) def ge(self, other, axis: Axis = "columns", level=None) -> DataFrame: return self._flex_cmp_method(other, operator.ge, axis=axis, level=level) @Appender(ops.make_flex_doc("gt", "dataframe")) def gt(self, other, axis: Axis = "columns", level=None) -> DataFrame: return self._flex_cmp_method(other, operator.gt, axis=axis, level=level) @Appender(ops.make_flex_doc("add", "dataframe")) def add( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, operator.add, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("radd", "dataframe")) def radd( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, roperator.radd, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("sub", "dataframe")) def sub( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, operator.sub, level=level, fill_value=fill_value, axis=axis ) subtract = sub @Appender(ops.make_flex_doc("rsub", "dataframe")) def rsub( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, roperator.rsub, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("mul", "dataframe")) def mul( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, operator.mul, level=level, fill_value=fill_value, axis=axis ) multiply = mul @Appender(ops.make_flex_doc("rmul", "dataframe")) def rmul( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, roperator.rmul, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("truediv", "dataframe")) def truediv( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, operator.truediv, level=level, fill_value=fill_value, axis=axis ) div = truediv divide = truediv @Appender(ops.make_flex_doc("rtruediv", "dataframe")) def rtruediv( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, roperator.rtruediv, level=level, fill_value=fill_value, axis=axis ) rdiv = rtruediv @Appender(ops.make_flex_doc("floordiv", "dataframe")) def floordiv( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, operator.floordiv, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("rfloordiv", "dataframe")) def rfloordiv( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, roperator.rfloordiv, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("mod", "dataframe")) def mod( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, operator.mod, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("rmod", "dataframe")) def rmod( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, roperator.rmod, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("pow", "dataframe")) def pow( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, operator.pow, level=level, fill_value=fill_value, axis=axis ) @Appender(ops.make_flex_doc("rpow", "dataframe")) def rpow( self, other, axis: Axis = "columns", level=None, fill_value=None ) -> DataFrame: return self._flex_arith_method( other, roperator.rpow, level=level, fill_value=fill_value, axis=axis ) # ---------------------------------------------------------------------- # Combination-Related @doc( _shared_docs["compare"], dedent( """ Returns ------- DataFrame DataFrame that shows the differences stacked side by side. The resulting index will be a MultiIndex with 'self' and 'other' stacked alternately at the inner level. Raises ------ ValueError When the two DataFrames don't have identical labels or shape. See Also -------- Series.compare : Compare with another Series and show differences. DataFrame.equals : Test whether two objects contain the same elements. Notes ----- Matching NaNs will not appear as a difference. Can only compare identically-labeled (i.e. same shape, identical row and column labels) DataFrames Examples -------- >>> df = pd.DataFrame( ... {{ ... "col1": ["a", "a", "b", "b", "a"], ... "col2": [1.0, 2.0, 3.0, np.nan, 5.0], ... "col3": [1.0, 2.0, 3.0, 4.0, 5.0] ... }}, ... columns=["col1", "col2", "col3"], ... ) >>> df col1 col2 col3 0 a 1.0 1.0 1 a 2.0 2.0 2 b 3.0 3.0 3 b NaN 4.0 4 a 5.0 5.0 >>> df2 = df.copy() >>> df2.loc[0, 'col1'] = 'c' >>> df2.loc[2, 'col3'] = 4.0 >>> df2 col1 col2 col3 0 c 1.0 1.0 1 a 2.0 2.0 2 b 3.0 4.0 3 b NaN 4.0 4 a 5.0 5.0 Align the differences on columns >>> df.compare(df2) col1 col3 self other self other 0 a c NaN NaN 2 NaN NaN 3.0 4.0 Assign result_names >>> df.compare(df2, result_names=("left", "right")) col1 col3 left right left right 0 a c NaN NaN 2 NaN NaN 3.0 4.0 Stack the differences on rows >>> df.compare(df2, align_axis=0) col1 col3 0 self a NaN other c NaN 2 self NaN 3.0 other NaN 4.0 Keep the equal values >>> df.compare(df2, keep_equal=True) col1 col3 self other self other 0 a c 1.0 1.0 2 b b 3.0 4.0 Keep all original rows and columns >>> df.compare(df2, keep_shape=True) col1 col2 col3 self other self other self other 0 a c NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN NaN 3.0 4.0 3 NaN NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN NaN Keep all original rows and columns and also all original values >>> df.compare(df2, keep_shape=True, keep_equal=True) col1 col2 col3 self other self other self other 0 a c 1.0 1.0 1.0 1.0 1 a a 2.0 2.0 2.0 2.0 2 b b 3.0 3.0 3.0 4.0 3 b b NaN NaN 4.0 4.0 4 a a 5.0 5.0 5.0 5.0 """ ), klass=_shared_doc_kwargs["klass"], ) def compare( self, other: DataFrame, align_axis: Axis = 1, keep_shape: bool = False, keep_equal: bool = False, result_names: Suffixes = ("self", "other"), ) -> DataFrame: return super().compare( other=other, align_axis=align_axis, keep_shape=keep_shape, keep_equal=keep_equal, result_names=result_names, ) def combine( self, other: DataFrame, func: Callable[[Series, Series], Series | Hashable], fill_value=None, overwrite: bool = True, ) -> DataFrame: """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible; otherwise align above ensures that these are set-equal new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] other_series = other[col] this_dtype = series.dtype other_dtype = other_series.dtype this_mask = isna(series) other_mask = isna(other_series) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() other_series = other_series.copy() series[this_mask] = fill_value other_series[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) series = series.astype(new_dtype, copy=False) other_series = other_series.astype(new_dtype, copy=False) arr = func(series, other_series) if isinstance(new_dtype, np.dtype): # if new_dtype is an EA Dtype, then `func` is expected to return # the correct dtype without any additional casting # error: No overload variant of "maybe_downcast_to_dtype" matches # argument types "Union[Series, Hashable]", "dtype[Any]" arr = maybe_downcast_to_dtype( # type: ignore[call-overload] arr, new_dtype ) result[col] = arr # convert_objects just in case frame_result = self._constructor(result, index=new_index, columns=new_columns) return frame_result.__finalize__(self, method="combine") def combine_first(self, other: DataFrame) -> DataFrame: """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. The resulting dataframe contains the 'first' dataframe values and overrides the second one values where both first.loc[index, col] and second.loc[index, col] are not missing values, upon calling first.combine_first(second). Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame The result of combining the provided DataFrame with the other object. See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ from pandas.core.computation import expressions def combiner(x: Series, y: Series): mask = x.isna()._values x_values = x._values y_values = y._values # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) if len(other) == 0: combined = self.reindex( self.columns.append(other.columns.difference(self.columns)), axis=1 ) combined = combined.astype(other.dtypes) else: combined = self.combine(other, combiner, overwrite=False) dtypes = { col: find_common_type([self.dtypes[col], other.dtypes[col]]) for col in self.columns.intersection(other.columns) if combined.dtypes[col] != self.dtypes[col] } if dtypes: combined = combined.astype(dtypes) return combined.__finalize__(self, method="combine_first") def update( self, other, join: UpdateJoin = "left", overwrite: bool = True, filter_func=None, errors: IgnoreRaise = "ignore", ) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. Returns ------- None This method directly changes calling object. Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-column(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'f']}, index=[0, 2]) >>> df.update(new_df) >>> df A B 0 a d 1 b y 2 c f For Series, its name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e', 'f'], name='B') >>> df.update(new_column) >>> df A B 0 a d 1 b e 2 c f If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400., 500., 600.]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ if not PYPY and using_copy_on_write(): if sys.getrefcount(self) <= REF_COUNT: warnings.warn( _chained_assignment_method_msg, ChainedAssignmentError, stacklevel=2, ) elif not PYPY and not using_copy_on_write() and self._is_view_after_cow_rules(): if sys.getrefcount(self) <= REF_COUNT: warnings.warn( _chained_assignment_warning_method_msg, FutureWarning, stacklevel=2, ) # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError("The parameter errors must be either 'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex(self.index) for col in self.columns.intersection(other.columns): this = self[col]._values that = other[col]._values if filter_func is not None: mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="Downcasting behavior", category=FutureWarning, ) # GH#57124 - `that` might get upcasted because of NA values, and then # downcasted in where because of the mask. Ignoring the warning # is a stopgap, will replace with a new implementation of update # in 3.0. self.loc[:, col] = self[col].where(mask, that) # ---------------------------------------------------------------------- # Data reshaping @Appender( dedent( """ Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0 We can also choose to include NA in group keys or not by setting `dropna` parameter, the default setting is `True`. >>> l = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]] >>> df = pd.DataFrame(l, columns=["a", "b", "c"]) >>> df.groupby(by=["b"]).sum() a c b 1.0 2 3 2.0 2 5 >>> df.groupby(by=["b"], dropna=False).sum() a c b 1.0 2 3 2.0 2 5 NaN 1 4 >>> l = [["a", 12, 12], [None, 12.3, 33.], ["b", 12.3, 123], ["a", 1, 1]] >>> df = pd.DataFrame(l, columns=["a", "b", "c"]) >>> df.groupby(by="a").sum() b c a a 13.0 13.0 b 12.3 123.0 >>> df.groupby(by="a", dropna=False).sum() b c a a 13.0 13.0 b 12.3 123.0 NaN 12.3 33.0 When using ``.apply()``, use ``group_keys`` to include or exclude the group keys. The ``group_keys`` argument defaults to ``True`` (include). >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df.groupby("Animal", group_keys=True)[['Max Speed']].apply(lambda x: x) Max Speed Animal Falcon 0 380.0 1 370.0 Parrot 2 24.0 3 26.0 >>> df.groupby("Animal", group_keys=False)[['Max Speed']].apply(lambda x: x) Max Speed 0 380.0 1 370.0 2 24.0 3 26.0 """ ) ) @Appender(_shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis: Axis | lib.NoDefault = lib.no_default, level: IndexLabel | None = None, as_index: bool = True, sort: bool = True, group_keys: bool = True, observed: bool | lib.NoDefault = lib.no_default, dropna: bool = True, ) -> DataFrameGroupBy: if axis is not lib.no_default: axis = self._get_axis_number(axis) if axis == 1: warnings.warn( "DataFrame.groupby with axis=1 is deprecated. Do " "`frame.T.groupby(...)` without axis instead.", FutureWarning, stacklevel=find_stack_level(), ) else: warnings.warn( "The 'axis' keyword in DataFrame.groupby is deprecated and " "will be removed in a future version.", FutureWarning, stacklevel=find_stack_level(), ) else: axis = 0 from pandas.core.groupby.generic import DataFrameGroupBy if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") return DataFrameGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, observed=observed, dropna=dropna, ) _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide ` for more on reshaping. Parameters ----------%s columns : str or object or a list of str Column to use to make new frame's columns. index : str or object or a list of str, optional Column to use to make new frame's index. If not given, uses existing index. values : str, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. wide_to_long : Wide panel to long format. Less flexible but more user-friendly than melt. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Reference :ref:`the user guide ` for more examples. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t You could also assign a list of column names or a list of index names. >>> df = pd.DataFrame({ ... "lev1": [1, 1, 1, 2, 2, 2], ... "lev2": [1, 1, 2, 1, 1, 2], ... "lev3": [1, 2, 1, 2, 1, 2], ... "lev4": [1, 2, 3, 4, 5, 6], ... "values": [0, 1, 2, 3, 4, 5]}) >>> df lev1 lev2 lev3 lev4 values 0 1 1 1 1 0 1 1 1 2 2 1 2 1 2 1 3 2 3 2 1 2 4 3 4 2 1 1 5 4 5 2 2 2 6 5 >>> df.pivot(index="lev1", columns=["lev2", "lev3"], values="values") lev2 1 2 lev3 1 2 1 2 lev1 1 0.0 1.0 2.0 NaN 2 4.0 3.0 NaN 5.0 >>> df.pivot(index=["lev1", "lev2"], columns=["lev3"], values="values") lev3 1 2 lev1 lev2 1 1 0.0 1.0 2 2.0 NaN 2 1 4.0 3.0 2 NaN 5.0 A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot( self, *, columns, index=lib.no_default, values=lib.no_default ) -> DataFrame: from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : list-like or scalar, optional Column or columns to aggregate. index : column, Grouper, array, or list of the previous Keys to group by on the pivot table index. If a list is passed, it can contain any of the other types (except list). If an array is passed, it must be the same length as the data and will be used in the same manner as column values. columns : column, Grouper, array, or list of the previous Keys to group by on the pivot table column. If a list is passed, it can contain any of the other types (except list). If an array is passed, it must be the same length as the data and will be used in the same manner as column values. aggfunc : function, list of functions, dict, default "mean" If a list of functions is passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves). If a dict is passed, the key is column to aggregate and the value is function or list of functions. If ``margin=True``, aggfunc will be used to calculate the partial aggregates. fill_value : scalar, default None Value to replace missing values with (in the resulting pivot table, after aggregation). margins : bool, default False If ``margins=True``, special ``All`` columns and rows will be added with partial group aggregates across the categories on the rows and columns. dropna : bool, default True Do not include columns whose entries are all NaN. If True, rows with a NaN value in any column will be omitted before computing margins. margins_name : str, default 'All' Name of the row / column that will contain the totals when margins is True. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. deprecated:: 2.2.0 The default value of ``False`` is deprecated and will change to ``True`` in a future version of pandas. sort : bool, default True Specifies if the result should be sorted. .. versionadded:: 1.3.0 Returns ------- DataFrame An Excel style pivot table. See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. DataFrame.melt: Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. wide_to_long : Wide panel to long format. Less flexible but more user-friendly than melt. Notes ----- Reference :ref:`the user guide ` for more examples. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc="sum") >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc="sum", fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': "mean", 'E': "mean"}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': "mean", ... 'E': ["min", "max", "mean"]}) >>> table D E mean max mean min A C bar large 5.500000 9 7.500000 6 small 5.500000 9 8.500000 8 foo large 2.000000 5 4.500000 4 small 2.333333 6 4.333333 2 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc: AggFuncType = "mean", fill_value=None, margins: bool = False, dropna: bool = True, margins_name: Level = "All", observed: bool | lib.NoDefault = lib.no_default, sort: bool = True, ) -> DataFrame: from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, sort=sort, ) def stack( self, level: IndexLabel = -1, dropna: bool | lib.NoDefault = lib.no_default, sort: bool | lib.NoDefault = lib.no_default, future_stack: bool = False, ): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. sort : bool, default True Whether to sort the levels of the resulting MultiIndex. future_stack : bool, default False Whether to use the new implementation that will replace the current implementation in pandas 3.0. When True, dropna and sort have no impact on the result and must remain unspecified. See :ref:`pandas 2.1.0 Release notes ` for more details. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Reference :ref:`the user guide ` for more examples. Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack(future_stack=True) cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack(future_stack=True) weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack(future_stack=True) weight height cat kg 1.0 NaN m NaN 2.0 dog kg 3.0 NaN m NaN 4.0 **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0, future_stack=True) kg m cat weight 1.0 NaN height NaN 2.0 dog weight 3.0 NaN height NaN 4.0 >>> df_multi_level_cols2.stack([0, 1], future_stack=True) cat weight kg 1.0 height m 2.0 dog weight kg 3.0 height m 4.0 dtype: float64 """ if not future_stack: from pandas.core.reshape.reshape import ( stack, stack_multiple, ) if ( dropna is not lib.no_default or sort is not lib.no_default or self.columns.nlevels > 1 ): warnings.warn( "The previous implementation of stack is deprecated and will be " "removed in a future version of pandas. See the What's New notes " "for pandas 2.1.0 for details. Specify future_stack=True to adopt " "the new implementation and silence this warning.", FutureWarning, stacklevel=find_stack_level(), ) if dropna is lib.no_default: dropna = True if sort is lib.no_default: sort = True if isinstance(level, (tuple, list)): result = stack_multiple(self, level, dropna=dropna, sort=sort) else: result = stack(self, level, dropna=dropna, sort=sort) else: from pandas.core.reshape.reshape import stack_v3 if dropna is not lib.no_default: raise ValueError( "dropna must be unspecified with future_stack=True as the new " "implementation does not introduce rows of NA values. This " "argument will be removed in a future version of pandas." ) if sort is not lib.no_default: raise ValueError( "Cannot specify sort with future_stack=True, this argument will be " "removed in a future version of pandas. Sort the result using " ".sort_index instead." ) if ( isinstance(level, (tuple, list)) and not all(lev in self.columns.names for lev in level) and not all(isinstance(lev, int) for lev in level) ): raise ValueError( "level should contain all level names or all level " "numbers, not a mixture of the two." ) if not isinstance(level, (tuple, list)): level = [level] level = [self.columns._get_level_number(lev) for lev in level] result = stack_v3(self, level) return result.__finalize__(self, method="stack") def explode( self, column: IndexLabel, ignore_index: bool = False, ) -> DataFrame: """ Transform each element of a list-like to a row, replicating index values. Parameters ---------- column : IndexLabel Column(s) to explode. For multiple columns, specify a non-empty list with each element be str or tuple, and all specified columns their list-like data on same row of the frame must have matching length. .. versionadded:: 1.3.0 Multi-column explode ignore_index : bool, default False If True, the resulting index will be labeled 0, 1, …, n - 1. Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : * If columns of the frame are not unique. * If specified columns to explode is empty list. * If specified columns to explode have not matching count of elements rowwise in the frame. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, sets, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged, and empty list-likes will result in a np.nan for that row. In addition, the ordering of rows in the output will be non-deterministic when exploding sets. Reference :ref:`the user guide ` for more examples. Examples -------- >>> df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]], ... 'B': 1, ... 'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]}) >>> df A B C 0 [0, 1, 2] 1 [a, b, c] 1 foo 1 NaN 2 [] 1 [] 3 [3, 4] 1 [d, e] Single-column explode. >>> df.explode('A') A B C 0 0 1 [a, b, c] 0 1 1 [a, b, c] 0 2 1 [a, b, c] 1 foo 1 NaN 2 NaN 1 [] 3 3 1 [d, e] 3 4 1 [d, e] Multi-column explode. >>> df.explode(list('AC')) A B C 0 0 1 a 0 1 1 b 0 2 1 c 1 foo 1 NaN 2 NaN 1 NaN 3 3 1 d 3 4 1 e """ if not self.columns.is_unique: duplicate_cols = self.columns[self.columns.duplicated()].tolist() raise ValueError( f"DataFrame columns must be unique. Duplicate columns: {duplicate_cols}" ) columns: list[Hashable] if is_scalar(column) or isinstance(column, tuple): columns = [column] elif isinstance(column, list) and all( is_scalar(c) or isinstance(c, tuple) for c in column ): if not column: raise ValueError("column must be nonempty") if len(column) > len(set(column)): raise ValueError("column must be unique") columns = column else: raise ValueError("column must be a scalar, tuple, or list thereof") df = self.reset_index(drop=True) if len(columns) == 1: result = df[columns[0]].explode() else: mylen = lambda x: len(x) if (is_list_like(x) and len(x) > 0) else 1 counts0 = self[columns[0]].apply(mylen) for c in columns[1:]: if not all(counts0 == self[c].apply(mylen)): raise ValueError("columns must have matching element counts") result = DataFrame({c: df[c].explode() for c in columns}) result = df.drop(columns, axis=1).join(result) if ignore_index: result.index = default_index(len(result)) else: result.index = self.index.take(result.index) result = result.reindex(columns=self.columns, copy=False) return result.__finalize__(self, method="explode") def unstack(self, level: IndexLabel = -1, fill_value=None, sort: bool = True): """ Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). Parameters ---------- level : int, str, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name. fill_value : int, str or dict Replace NaN with this value if the unstack produces missing values. sort : bool, default True Sort the level(s) in the resulting MultiIndex columns. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Notes ----- Reference :ref:`the user guide ` for more examples. Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack result = unstack(self, level, fill_value, sort) return result.__finalize__(self, method="unstack") @Appender(_shared_docs["melt"] % {"caller": "df.melt(", "other": "melt"}) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name: Hashable = "value", col_level: Level | None = None, ignore_index: bool = True, ) -> DataFrame: return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ignore_index=ignore_index, ).__finalize__(self, method="melt") # ---------------------------------------------------------------------- # Time series-related @doc( Series.diff, klass="DataFrame", extra_params="axis : {0 or 'index', 1 or 'columns'}, default 0\n " "Take difference over rows (0) or columns (1).\n", other_klass="Series", examples=dedent( """ Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0 0 1 NaN -1 3 2 NaN -1 7 3 NaN -1 13 4 NaN 0 20 5 NaN 2 28 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN Overflow in input dtype >>> df = pd.DataFrame({'a': [1, 0]}, dtype=np.uint8) >>> df.diff() a 0 NaN 1 255.0""" ), ) def diff(self, periods: int = 1, axis: Axis = 0) -> DataFrame: if not lib.is_integer(periods): if not (is_float(periods) and periods.is_integer()): raise ValueError("periods must be an integer") periods = int(periods) axis = self._get_axis_number(axis) if axis == 1: if periods != 0: # in the periods == 0 case, this is equivalent diff of 0 periods # along axis=0, and the Manager method may be somewhat more # performant, so we dispatch in that case. return self - self.shift(periods, axis=axis) # With periods=0 this is equivalent to a diff with axis=0 axis = 0 new_data = self._mgr.diff(n=periods) res_df = self._constructor_from_mgr(new_data, axes=new_data.axes) return res_df.__finalize__(self, "diff") # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: IndexLabel, ndim: int, subset: DataFrame | Series | None = None, ) -> DataFrame | Series: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : {1, 2} requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_see_also_doc = dedent( """ See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. pandas.DataFrame.groupby : Perform operations over groups. pandas.DataFrame.resample : Perform operations over resampled bins. pandas.DataFrame.rolling : Perform operations over rolling window. pandas.DataFrame.expanding : Perform operations over expanding window. pandas.core.window.ewm.ExponentialMovingWindow : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B sum 12.0 NaN min 1.0 2.0 max NaN 8.0 Aggregate different functions over the columns and rename the index of the resulting DataFrame. >>> df.agg(x=('A', 'max'), y=('B', 'min'), z=('C', 'mean')) A B C x 7.0 NaN NaN y NaN 2.0 NaN z NaN NaN 6.0 Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @doc( _shared_docs["aggregate"], klass=_shared_doc_kwargs["klass"], axis=_shared_doc_kwargs["axis"], see_also=_agg_see_also_doc, examples=_agg_examples_doc, ) def aggregate(self, func=None, axis: Axis = 0, *args, **kwargs): from pandas.core.apply import frame_apply axis = self._get_axis_number(axis) op = frame_apply(self, func=func, axis=axis, args=args, kwargs=kwargs) result = op.agg() result = reconstruct_and_relabel_result(result, func, **kwargs) return result agg = aggregate @doc( _shared_docs["transform"], klass=_shared_doc_kwargs["klass"], axis=_shared_doc_kwargs["axis"], ) def transform( self, func: AggFuncType, axis: Axis = 0, *args, **kwargs ) -> DataFrame: from pandas.core.apply import frame_apply op = frame_apply(self, func=func, axis=axis, args=args, kwargs=kwargs) result = op.transform() assert isinstance(result, DataFrame) return result def apply( self, func: AggFuncType, axis: Axis = 0, raw: bool = False, result_type: Literal["expand", "reduce", "broadcast"] | None = None, args=(), by_row: Literal[False, "compat"] = "compat", engine: Literal["python", "numba"] = "python", engine_kwargs: dict[str, bool] | None = None, **kwargs, ): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. raw : bool, default False Determines if row or column is passed as a Series or ndarray object: * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. args : tuple Positional arguments to pass to `func` in addition to the array/series. by_row : False or "compat", default "compat" Only has an effect when ``func`` is a listlike or dictlike of funcs and the func isn't a string. If "compat", will if possible first translate the func into pandas methods (e.g. ``Series().apply(np.sum)`` will be translated to ``Series().sum()``). If that doesn't work, will try call to apply again with ``by_row=True`` and if that fails, will call apply again with ``by_row=False`` (backward compatible). If False, the funcs will be passed the whole Series at once. .. versionadded:: 2.1.0 engine : {'python', 'numba'}, default 'python' Choose between the python (default) engine or the numba engine in apply. The numba engine will attempt to JIT compile the passed function, which may result in speedups for large DataFrames. It also supports the following engine_kwargs : - nopython (compile the function in nopython mode) - nogil (release the GIL inside the JIT compiled function) - parallel (try to apply the function in parallel over the DataFrame) Note: Due to limitations within numba/how pandas interfaces with numba, you should only use this if raw=True Note: The numba compiler only supports a subset of valid Python/numpy operations. Please read more about the `supported python features `_ and `supported numpy features `_ in numba to learn what you can or cannot use in the passed function. .. versionadded:: 2.2.0 engine_kwargs : dict Pass keyword arguments to the engine. This is currently only used by the numba engine, see the documentation for the engine argument for more information. **kwargs Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.map: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` for more details. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing ``result_type='expand'`` will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, raw=raw, result_type=result_type, by_row=by_row, engine=engine, engine_kwargs=engine_kwargs, args=args, kwargs=kwargs, ) return op.apply().__finalize__(self, method="apply") def map( self, func: PythonFuncType, na_action: str | None = None, **kwargs ) -> DataFrame: """ Apply a function to a Dataframe elementwise. .. versionadded:: 2.1.0 DataFrame.applymap was deprecated and renamed to DataFrame.map. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to func. **kwargs Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. DataFrame.replace: Replace values given in `to_replace` with `value`. Series.map : Apply a function elementwise on a Series. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.map(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Like Series.map, NA values can be ignored: >>> df_copy = df.copy() >>> df_copy.iloc[0, 0] = pd.NA >>> df_copy.map(lambda x: len(str(x)), na_action='ignore') 0 1 0 NaN 4 1 5.0 5 It is also possible to use `map` with functions that are not `lambda` functions: >>> df.map(round, ndigits=1) 0 1 0 1.0 2.1 1 3.4 4.6 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.map(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid map in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ if na_action not in {"ignore", None}: raise ValueError( f"na_action must be 'ignore' or None. Got {repr(na_action)}" ) if self.empty: return self.copy() func = functools.partial(func, **kwargs) def infer(x): return x._map_values(func, na_action=na_action) return self.apply(infer).__finalize__(self, "map") def applymap( self, func: PythonFuncType, na_action: NaAction | None = None, **kwargs ) -> DataFrame: """ Apply a function to a Dataframe elementwise. .. deprecated:: 2.1.0 DataFrame.applymap has been deprecated. Use DataFrame.map instead. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to func. **kwargs Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. DataFrame.map : Apply a function along input axis of DataFrame. DataFrame.replace: Replace values given in `to_replace` with `value`. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.map(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 """ warnings.warn( "DataFrame.applymap has been deprecated. Use DataFrame.map instead.", FutureWarning, stacklevel=find_stack_level(), ) return self.map(func, na_action=na_action, **kwargs) # ---------------------------------------------------------------------- # Merging / joining methods def _append( self, other, ignore_index: bool = False, verify_integrity: bool = False, sort: bool = False, ) -> DataFrame: if isinstance(other, (Series, dict)): if isinstance(other, dict): if not ignore_index: raise TypeError("Can only append a dict if ignore_index=True") other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) index = Index( [other.name], name=self.index.names if isinstance(self.index, MultiIndex) else self.index.name, ) row_df = other.to_frame().T # infer_objects is needed for # test_append_empty_frame_to_series_with_dateutil_tz other = row_df.infer_objects(copy=False).rename_axis( index.names, copy=False ) elif isinstance(other, list): if not other: pass elif not isinstance(other[0], DataFrame): other = DataFrame(other) if self.index.name is not None and not ignore_index: other.index.name = self.index.name from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self, *other] else: to_concat = [self, other] result = concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) return result.__finalize__(self, method="append") def join( self, other: DataFrame | Series | Iterable[DataFrame | Series], on: IndexLabel | None = None, how: MergeHow = "left", lsuffix: str = "", rsuffix: str = "", sort: bool = False, validate: JoinValidate | None = None, ) -> DataFrame: """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or a list containing any combination of them Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner', 'cross'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. * cross: creates the cartesian product from both frames, preserves the order of the left keys. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). validate : str, optional If specified, checks if join is of specified type. * "one_to_one" or "1:1": check if join keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if join keys are unique in left dataset. * "many_to_one" or "m:1": check if join keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 1.5.0 Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-column(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN Using non-unique key values shows how they are matched. >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K1 A2 3 K3 A3 4 K0 A4 5 K1 A5 >>> df.join(other.set_index('key'), on='key', validate='m:1') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K1 A2 B1 3 K3 A3 NaN 4 K0 A4 B0 5 K1 A5 B1 """ from pandas.core.reshape.concat import concat from pandas.core.reshape.merge import merge if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): if how == "cross": return merge( self, other, how=how, on=on, suffixes=(lsuffix, rsuffix), sort=sort, validate=validate, ) return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, validate=validate, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) if rsuffix or lsuffix: raise ValueError( "Suffixes not supported when joining multiple DataFrames" ) # Mypy thinks the RHS is a # "Union[DataFrame, Series, Iterable[Union[DataFrame, Series]]]" whereas # the LHS is an "Iterable[DataFrame]", but in reality both types are # "Iterable[Union[DataFrame, Series]]" due to the if statements frames = [cast("DataFrame | Series", self)] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat( frames, axis=1, join="outer", verify_integrity=True, sort=sort ) return res.reindex(self.index, copy=False) else: return concat( frames, axis=1, join=how, verify_integrity=True, sort=sort ) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True, validate=validate, ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right: DataFrame | Series, how: MergeHow = "inner", on: IndexLabel | AnyArrayLike | None = None, left_on: IndexLabel | AnyArrayLike | None = None, right_on: IndexLabel | AnyArrayLike | None = None, left_index: bool = False, right_index: bool = False, sort: bool = False, suffixes: Suffixes = ("_x", "_y"), copy: bool | None = None, indicator: str | bool = False, validate: MergeValidate | None = None, ) -> DataFrame: from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round( self, decimals: int | dict[IndexLabel, int] | Series = 0, *args, **kwargs ) -> DataFrame: """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df: DataFrame, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(ser: Series, decimals: int) -> Series: if is_integer_dtype(ser.dtype) or is_float_dtype(ser.dtype): return ser.round(decimals) return ser nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series) and not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") if is_dict_like(decimals) and not all( is_integer(value) for _, value in decimals.items() ): raise TypeError("Values in decimals must be integers") new_cols = list(_dict_round(self, decimals)) elif is_integer(decimals): # Dispatch to Block.round # Argument "decimals" to "round" of "BaseBlockManager" has incompatible # type "Union[int, integer[Any]]"; expected "int" new_mgr = self._mgr.round( decimals=decimals, # type: ignore[arg-type] using_cow=using_copy_on_write(), ) return self._constructor_from_mgr(new_mgr, axes=new_mgr.axes).__finalize__( self, method="round" ) else: raise TypeError("decimals must be an integer, a dict-like or a Series") if new_cols is not None and len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ).__finalize__(self, method="round") else: return self.copy(deep=False) # ---------------------------------------------------------------------- # Statistical methods, etc. def corr( self, method: CorrelationMethod = "pearson", min_periods: int = 1, numeric_only: bool = False, ) -> DataFrame: """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. .. versionadded:: 1.5.0 .. versionchanged:: 2.0.0 The default value of ``numeric_only`` is now ``False``. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith : Compute pairwise correlation with another DataFrame or Series. Series.corr : Compute the correlation between two Series. Notes ----- Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations. * `Pearson correlation coefficient `_ * `Kendall rank correlation coefficient `_ * `Spearman's rank correlation coefficient `_ Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 >>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)], ... columns=['dogs', 'cats']) >>> df.corr(min_periods=3) dogs cats dogs 1.0 NaN cats NaN 1.0 """ # noqa: E501 data = self._get_numeric_data() if numeric_only else self cols = data.columns idx = cols.copy() mat = data.to_numpy(dtype=float, na_value=np.nan, copy=False) if method == "pearson": correl = libalgos.nancorr(mat, minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(mat, minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = mat.T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) result = self._constructor(correl, index=idx, columns=cols, copy=False) return result.__finalize__(self, method="corr") def cov( self, min_periods: int | None = None, ddof: int | None = 1, numeric_only: bool = False, ) -> DataFrame: """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix `__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. ddof : int, default 1 Delta degrees of freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. This argument is applicable only when no ``nan`` is in the dataframe. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. .. versionadded:: 1.5.0 .. versionchanged:: 2.0.0 The default value of ``numeric_only`` is now ``False``. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.ewm.ExponentialMovingWindow.cov : Exponential weighted sample covariance. core.window.expanding.Expanding.cov : Expanding sample covariance. core.window.rolling.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-ddof. For DataFrames that have Series that are missing data (assuming that data is `missing at random `__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices `__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ data = self._get_numeric_data() if numeric_only else self cols = data.columns idx = cols.copy() mat = data.to_numpy(dtype=float, na_value=np.nan, copy=False) if notna(mat).all(): if min_periods is not None and min_periods > len(mat): base_cov = np.empty((mat.shape[1], mat.shape[1])) base_cov.fill(np.nan) else: base_cov = np.cov(mat.T, ddof=ddof) base_cov = base_cov.reshape((len(cols), len(cols))) else: base_cov = libalgos.nancorr(mat, cov=True, minp=min_periods) result = self._constructor(base_cov, index=idx, columns=cols, copy=False) return result.__finalize__(self, method="cov") def corrwith( self, other: DataFrame | Series, axis: Axis = 0, drop: bool = False, method: CorrelationMethod = "pearson", numeric_only: bool = False, ) -> Series: """ Compute pairwise correlation. Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' to compute row-wise, 1 or 'columns' for column-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. .. versionadded:: 1.5.0 .. versionchanged:: 2.0.0 The default value of ``numeric_only`` is now ``False``. Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr : Compute pairwise correlation of columns. Examples -------- >>> index = ["a", "b", "c", "d", "e"] >>> columns = ["one", "two", "three", "four"] >>> df1 = pd.DataFrame(np.arange(20).reshape(5, 4), index=index, columns=columns) >>> df2 = pd.DataFrame(np.arange(16).reshape(4, 4), index=index[:4], columns=columns) >>> df1.corrwith(df2) one 1.0 two 1.0 three 1.0 four 1.0 dtype: float64 >>> df2.corrwith(df1, axis=1) a 1.0 b 1.0 c 1.0 d 1.0 e NaN dtype: float64 """ # noqa: E501 axis = self._get_axis_number(axis) this = self._get_numeric_data() if numeric_only else self if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) if numeric_only: other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean(numeric_only=numeric_only) rdem = right - right.mean(numeric_only=numeric_only) num = (ldem * rdem).sum() dom = ( (left.count() - 1) * left.std(numeric_only=numeric_only) * right.std(numeric_only=numeric_only) ) correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = self._constructor_sliced( map(c, zip(left.values.T, right.values.T)), index=left.columns, copy=False, ) else: raise ValueError( f"Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable" ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis: AxisInt = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl._append( Series([np.nan] * len(idx_diff), index=idx_diff) ) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis: Axis = 0, numeric_only: bool = False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, ``pandas.NA`` are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each row. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series For each column/row the number of non-NA/null entries. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.value_counts: Count unique combinations of columns. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 """ axis = self._get_axis_number(axis) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = self._constructor_sliced(0, index=frame._get_agg_axis(axis)) else: result = notna(frame).sum(axis=axis) return result.astype("int64", copy=False).__finalize__(self, method="count") def _reduce( self, op, name: str, *, axis: Axis = 0, skipna: bool = True, numeric_only: bool = False, filter_type=None, **kwds, ): assert filter_type is None or filter_type == "bool", filter_type out_dtype = "bool" if filter_type == "bool" else None if axis is not None: axis = self._get_axis_number(axis) def func(values: np.ndarray): # We only use this in the case that operates on self.values return op(values, axis=axis, skipna=skipna, **kwds) dtype_has_keepdims: dict[ExtensionDtype, bool] = {} def blk_func(values, axis: Axis = 1): if isinstance(values, ExtensionArray): if not is_1d_only_ea_dtype(values.dtype) and not isinstance( self._mgr, ArrayManager ): return values._reduce(name, axis=1, skipna=skipna, **kwds) has_keepdims = dtype_has_keepdims.get(values.dtype) if has_keepdims is None: sign = signature(values._reduce) has_keepdims = "keepdims" in sign.parameters dtype_has_keepdims[values.dtype] = has_keepdims if has_keepdims: return values._reduce(name, skipna=skipna, keepdims=True, **kwds) else: warnings.warn( f"{type(values)}._reduce will require a `keepdims` parameter " "in the future", FutureWarning, stacklevel=find_stack_level(), ) result = values._reduce(name, skipna=skipna, **kwds) return np.array([result]) else: return op(values, axis=axis, skipna=skipna, **kwds) def _get_data() -> DataFrame: if filter_type is None: data = self._get_numeric_data() else: # GH#25101, GH#24434 assert filter_type == "bool" data = self._get_bool_data() return data # Case with EAs see GH#35881 df = self if numeric_only: df = _get_data() if axis is None: dtype = find_common_type([arr.dtype for arr in df._mgr.arrays]) if isinstance(dtype, ExtensionDtype): df = df.astype(dtype, copy=False) arr = concat_compat(list(df._iter_column_arrays())) return arr._reduce(name, skipna=skipna, keepdims=False, **kwds) return func(df.values) elif axis == 1: if len(df.index) == 0: # Taking a transpose would result in no columns, losing the dtype. # In the empty case, reducing along axis 0 or 1 gives the same # result dtype, so reduce with axis=0 and ignore values result = df._reduce( op, name, axis=0, skipna=skipna, numeric_only=False, filter_type=filter_type, **kwds, ).iloc[:0] result.index = df.index return result # kurtosis excluded since groupby does not implement it if df.shape[1] and name != "kurt": dtype = find_common_type([arr.dtype for arr in df._mgr.arrays]) if isinstance(dtype, ExtensionDtype): # GH 54341: fastpath for EA-backed axis=1 reductions # This flattens the frame into a single 1D array while keeping # track of the row and column indices of the original frame. Once # flattened, grouping by the row indices and aggregating should # be equivalent to transposing the original frame and aggregating # with axis=0. name = {"argmax": "idxmax", "argmin": "idxmin"}.get(name, name) df = df.astype(dtype, copy=False) arr = concat_compat(list(df._iter_column_arrays())) nrows, ncols = df.shape row_index = np.tile(np.arange(nrows), ncols) col_index = np.repeat(np.arange(ncols), nrows) ser = Series(arr, index=col_index, copy=False) # GroupBy will raise a warning with SeriesGroupBy as the object, # likely confusing users with rewrite_warning( target_message=( f"The behavior of SeriesGroupBy.{name} with all-NA values" ), target_category=FutureWarning, new_message=( f"The behavior of {type(self).__name__}.{name} with all-NA " "values, or any-NA and skipna=False, is deprecated. In " "a future version this will raise ValueError" ), ): result = ser.groupby(row_index).agg(name, **kwds) result.index = df.index if not skipna and name not in ("any", "all"): mask = df.isna().to_numpy(dtype=np.bool_).any(axis=1) other = -1 if name in ("idxmax", "idxmin") else lib.no_default result = result.mask(mask, other) return result df = df.T # After possibly _get_data and transposing, we are now in the # simple case where we can use BlockManager.reduce res = df._mgr.reduce(blk_func) out = df._constructor_from_mgr(res, axes=res.axes).iloc[0] if out_dtype is not None and out.dtype != "boolean": out = out.astype(out_dtype) elif (df._mgr.get_dtypes() == object).any() and name not in ["any", "all"]: out = out.astype(object) elif len(self) == 0 and out.dtype == object and name in ("sum", "prod"): # Even if we are object dtype, follow numpy and return # float64, see test_apply_funcs_over_empty out = out.astype(np.float64) return out def _reduce_axis1(self, name: str, func, skipna: bool) -> Series: """ Special case for _reduce to try to avoid a potentially-expensive transpose. Apply the reduction block-wise along axis=1 and then reduce the resulting 1D arrays. """ if name == "all": result = np.ones(len(self), dtype=bool) ufunc = np.logical_and elif name == "any": result = np.zeros(len(self), dtype=bool) # error: Incompatible types in assignment # (expression has type "_UFunc_Nin2_Nout1[Literal['logical_or'], # Literal[20], Literal[False]]", variable has type # "_UFunc_Nin2_Nout1[Literal['logical_and'], Literal[20], # Literal[True]]") ufunc = np.logical_or # type: ignore[assignment] else: raise NotImplementedError(name) for arr in self._mgr.arrays: middle = func(arr, axis=0, skipna=skipna) result = ufunc(result, middle) res_ser = self._constructor_sliced(result, index=self.index, copy=False) return res_ser @doc(make_doc("any", ndim=2)) # error: Signature of "any" incompatible with supertype "NDFrame" def any( # type: ignore[override] self, *, axis: Axis | None = 0, bool_only: bool = False, skipna: bool = True, **kwargs, ) -> Series | bool: result = self._logical_func( "any", nanops.nanany, axis, bool_only, skipna, **kwargs ) if isinstance(result, Series): result = result.__finalize__(self, method="any") return result @doc(make_doc("all", ndim=2)) def all( self, axis: Axis | None = 0, bool_only: bool = False, skipna: bool = True, **kwargs, ) -> Series | bool: result = self._logical_func( "all", nanops.nanall, axis, bool_only, skipna, **kwargs ) if isinstance(result, Series): result = result.__finalize__(self, method="all") return result @doc(make_doc("min", ndim=2)) def min( self, axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, **kwargs, ): result = super().min(axis, skipna, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="min") return result @doc(make_doc("max", ndim=2)) def max( self, axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, **kwargs, ): result = super().max(axis, skipna, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="max") return result @doc(make_doc("sum", ndim=2)) def sum( self, axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, min_count: int = 0, **kwargs, ): result = super().sum(axis, skipna, numeric_only, min_count, **kwargs) return result.__finalize__(self, method="sum") @doc(make_doc("prod", ndim=2)) def prod( self, axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, min_count: int = 0, **kwargs, ): result = super().prod(axis, skipna, numeric_only, min_count, **kwargs) return result.__finalize__(self, method="prod") @doc(make_doc("mean", ndim=2)) def mean( self, axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, **kwargs, ): result = super().mean(axis, skipna, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="mean") return result @doc(make_doc("median", ndim=2)) def median( self, axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, **kwargs, ): result = super().median(axis, skipna, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="median") return result @doc(make_doc("sem", ndim=2)) def sem( self, axis: Axis | None = 0, skipna: bool = True, ddof: int = 1, numeric_only: bool = False, **kwargs, ): result = super().sem(axis, skipna, ddof, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="sem") return result @doc(make_doc("var", ndim=2)) def var( self, axis: Axis | None = 0, skipna: bool = True, ddof: int = 1, numeric_only: bool = False, **kwargs, ): result = super().var(axis, skipna, ddof, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="var") return result @doc(make_doc("std", ndim=2)) def std( self, axis: Axis | None = 0, skipna: bool = True, ddof: int = 1, numeric_only: bool = False, **kwargs, ): result = super().std(axis, skipna, ddof, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="std") return result @doc(make_doc("skew", ndim=2)) def skew( self, axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, **kwargs, ): result = super().skew(axis, skipna, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="skew") return result @doc(make_doc("kurt", ndim=2)) def kurt( self, axis: Axis | None = 0, skipna: bool = True, numeric_only: bool = False, **kwargs, ): result = super().kurt(axis, skipna, numeric_only, **kwargs) if isinstance(result, Series): result = result.__finalize__(self, method="kurt") return result kurtosis = kurt product = prod @doc(make_doc("cummin", ndim=2)) def cummin(self, axis: Axis | None = None, skipna: bool = True, *args, **kwargs): return NDFrame.cummin(self, axis, skipna, *args, **kwargs) @doc(make_doc("cummax", ndim=2)) def cummax(self, axis: Axis | None = None, skipna: bool = True, *args, **kwargs): return NDFrame.cummax(self, axis, skipna, *args, **kwargs) @doc(make_doc("cumsum", ndim=2)) def cumsum(self, axis: Axis | None = None, skipna: bool = True, *args, **kwargs): return NDFrame.cumsum(self, axis, skipna, *args, **kwargs) @doc(make_doc("cumprod", 2)) def cumprod(self, axis: Axis | None = None, skipna: bool = True, *args, **kwargs): return NDFrame.cumprod(self, axis, skipna, *args, **kwargs) def nunique(self, axis: Axis = 0, dropna: bool = True) -> Series: """ Count number of distinct elements in specified axis. Return Series with number of distinct elements. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]}) >>> df.nunique() A 3 B 2 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) @doc(_shared_docs["idxmin"], numeric_only_default="False") def idxmin( self, axis: Axis = 0, skipna: bool = True, numeric_only: bool = False ) -> Series: axis = self._get_axis_number(axis) if self.empty and len(self.axes[axis]): axis_dtype = self.axes[axis].dtype return self._constructor_sliced(dtype=axis_dtype) if numeric_only: data = self._get_numeric_data() else: data = self res = data._reduce( nanops.nanargmin, "argmin", axis=axis, skipna=skipna, numeric_only=False ) indices = res._values # indices will always be np.ndarray since axis is not N if (indices == -1).any(): warnings.warn( f"The behavior of {type(self).__name__}.idxmin with all-NA " "values, or any-NA and skipna=False, is deprecated. In a future " "version this will raise ValueError", FutureWarning, stacklevel=find_stack_level(), ) index = data._get_axis(axis) result = algorithms.take( index._values, indices, allow_fill=True, fill_value=index._na_value ) final_result = data._constructor_sliced(result, index=data._get_agg_axis(axis)) return final_result.__finalize__(self, method="idxmin") @doc(_shared_docs["idxmax"], numeric_only_default="False") def idxmax( self, axis: Axis = 0, skipna: bool = True, numeric_only: bool = False ) -> Series: axis = self._get_axis_number(axis) if self.empty and len(self.axes[axis]): axis_dtype = self.axes[axis].dtype return self._constructor_sliced(dtype=axis_dtype) if numeric_only: data = self._get_numeric_data() else: data = self res = data._reduce( nanops.nanargmax, "argmax", axis=axis, skipna=skipna, numeric_only=False ) indices = res._values # indices will always be 1d array since axis is not None if (indices == -1).any(): warnings.warn( f"The behavior of {type(self).__name__}.idxmax with all-NA " "values, or any-NA and skipna=False, is deprecated. In a future " "version this will raise ValueError", FutureWarning, stacklevel=find_stack_level(), ) index = data._get_axis(axis) result = algorithms.take( index._values, indices, allow_fill=True, fill_value=index._na_value ) final_result = data._constructor_sliced(result, index=data._get_agg_axis(axis)) return final_result.__finalize__(self, method="idxmax") def _get_agg_axis(self, axis_num: int) -> Index: """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError(f"Axis must be 0 or 1 (got {repr(axis_num)})") def mode( self, axis: Axis = 0, numeric_only: bool = False, dropna: bool = True ) -> DataFrame: """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. Because the resulting DataFrame has two rows, the second row of ``species`` and ``legs`` contains ``NaN``. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) data = data.apply(f, axis=axis) # Ensure index is type stable (should always use int index) if data.empty: data.index = default_index(0) return data @overload def quantile( self, q: float = ..., axis: Axis = ..., numeric_only: bool = ..., interpolation: QuantileInterpolation = ..., method: Literal["single", "table"] = ..., ) -> Series: ... @overload def quantile( self, q: AnyArrayLike | Sequence[float], axis: Axis = ..., numeric_only: bool = ..., interpolation: QuantileInterpolation = ..., method: Literal["single", "table"] = ..., ) -> Series | DataFrame: ... @overload def quantile( self, q: float | AnyArrayLike | Sequence[float] = ..., axis: Axis = ..., numeric_only: bool = ..., interpolation: QuantileInterpolation = ..., method: Literal["single", "table"] = ..., ) -> Series | DataFrame: ... def quantile( self, q: float | AnyArrayLike | Sequence[float] = 0.5, axis: Axis = 0, numeric_only: bool = False, interpolation: QuantileInterpolation = "linear", method: Literal["single", "table"] = "single", ) -> Series | DataFrame: """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0 or 'index', 1 or 'columns'}, default 0 Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. .. versionchanged:: 2.0.0 The default value of ``numeric_only`` is now ``False``. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. method : {'single', 'table'}, default 'single' Whether to compute quantiles per-column ('single') or over all columns ('table'). When 'table', the only allowed interpolation methods are 'nearest', 'lower', and 'higher'. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.rolling.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `method='table'` will compute the quantile over all columns. >>> df.quantile(.1, method="table", interpolation="nearest") a 1 b 1 Name: 0.1, dtype: int64 >>> df.quantile([.1, .5], method="table", interpolation="nearest") a b 0.1 1 1 0.5 3 100 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ validate_percentile(q) axis = self._get_axis_number(axis) if not is_list_like(q): # BlockManager.quantile expects listlike, so we wrap and unwrap here # error: List item 0 has incompatible type "float | ExtensionArray | # ndarray[Any, Any] | Index | Series | Sequence[float]"; expected "float" res_df = self.quantile( [q], # type: ignore[list-item] axis=axis, numeric_only=numeric_only, interpolation=interpolation, method=method, ) if method == "single": res = res_df.iloc[0] else: # cannot directly iloc over sparse arrays res = res_df.T.iloc[:, 0] if axis == 1 and len(self) == 0: # GH#41544 try to get an appropriate dtype dtype = find_common_type(list(self.dtypes)) if needs_i8_conversion(dtype): return res.astype(dtype) return res q = Index(q, dtype=np.float64) data = self._get_numeric_data() if numeric_only else self if axis == 1: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) dtype = np.float64 if axis == 1: # GH#41544 try to get an appropriate dtype cdtype = find_common_type(list(self.dtypes)) if needs_i8_conversion(cdtype): dtype = cdtype res = self._constructor([], index=q, columns=cols, dtype=dtype) return res.__finalize__(self, method="quantile") valid_method = {"single", "table"} if method not in valid_method: raise ValueError( f"Invalid method: {method}. Method must be in {valid_method}." ) if method == "single": res = data._mgr.quantile(qs=q, interpolation=interpolation) elif method == "table": valid_interpolation = {"nearest", "lower", "higher"} if interpolation not in valid_interpolation: raise ValueError( f"Invalid interpolation: {interpolation}. " f"Interpolation must be in {valid_interpolation}" ) # handle degenerate case if len(data) == 0: if data.ndim == 2: dtype = find_common_type(list(self.dtypes)) else: dtype = self.dtype return self._constructor([], index=q, columns=data.columns, dtype=dtype) q_idx = np.quantile(np.arange(len(data)), q, method=interpolation) by = data.columns if len(by) > 1: keys = [data._get_label_or_level_values(x) for x in by] indexer = lexsort_indexer(keys) else: k = data._get_label_or_level_values(by[0]) indexer = nargsort(k) res = data._mgr.take(indexer[q_idx], verify=False) res.axes[1] = q result = self._constructor_from_mgr(res, axes=res.axes) return result.__finalize__(self, method="quantile") def to_timestamp( self, freq: Frequency | None = None, how: ToTimestampHow = "start", axis: Axis = 0, copy: bool | None = None, ) -> DataFrame: """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. .. note:: The `copy` keyword will change behavior in pandas 3.0. `Copy-on-Write `__ will be enabled by default, which means that all methods with a `copy` keyword will use a lazy copy mechanism to defer the copy and ignore the `copy` keyword. The `copy` keyword will be removed in a future version of pandas. You can already get the future behavior and improvements through enabling copy on write ``pd.options.mode.copy_on_write = True`` Returns ------- DataFrame The DataFrame has a DatetimeIndex. Examples -------- >>> idx = pd.PeriodIndex(['2023', '2024'], freq='Y') >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d, index=idx) >>> df1 col1 col2 2023 1 3 2024 2 4 The resulting timestamps will be at the beginning of the year in this case >>> df1 = df1.to_timestamp() >>> df1 col1 col2 2023-01-01 1 3 2024-01-01 2 4 >>> df1.index DatetimeIndex(['2023-01-01', '2024-01-01'], dtype='datetime64[ns]', freq=None) Using `freq` which is the offset that the Timestamps will have >>> df2 = pd.DataFrame(data=d, index=idx) >>> df2 = df2.to_timestamp(freq='M') >>> df2 col1 col2 2023-01-31 1 3 2024-01-31 2 4 >>> df2.index DatetimeIndex(['2023-01-31', '2024-01-31'], dtype='datetime64[ns]', freq=None) """ new_obj = self.copy(deep=copy and not using_copy_on_write()) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) if not isinstance(old_ax, PeriodIndex): raise TypeError(f"unsupported Type {type(old_ax).__name__}") new_ax = old_ax.to_timestamp(freq=freq, how=how) setattr(new_obj, axis_name, new_ax) return new_obj def to_period( self, freq: Frequency | None = None, axis: Axis = 0, copy: bool | None = None ) -> DataFrame: """ Convert DataFrame from DatetimeIndex to PeriodIndex. Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. .. note:: The `copy` keyword will change behavior in pandas 3.0. `Copy-on-Write `__ will be enabled by default, which means that all methods with a `copy` keyword will use a lazy copy mechanism to defer the copy and ignore the `copy` keyword. The `copy` keyword will be removed in a future version of pandas. You can already get the future behavior and improvements through enabling copy on write ``pd.options.mode.copy_on_write = True`` Returns ------- DataFrame The DataFrame has a PeriodIndex. Examples -------- >>> idx = pd.to_datetime( ... [ ... "2001-03-31 00:00:00", ... "2002-05-31 00:00:00", ... "2003-08-31 00:00:00", ... ] ... ) >>> idx DatetimeIndex(['2001-03-31', '2002-05-31', '2003-08-31'], dtype='datetime64[ns]', freq=None) >>> idx.to_period("M") PeriodIndex(['2001-03', '2002-05', '2003-08'], dtype='period[M]') For the yearly frequency >>> idx.to_period("Y") PeriodIndex(['2001', '2002', '2003'], dtype='period[Y-DEC]') """ new_obj = self.copy(deep=copy and not using_copy_on_write()) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) if not isinstance(old_ax, DatetimeIndex): raise TypeError(f"unsupported Type {type(old_ax).__name__}") new_ax = old_ax.to_period(freq=freq) setattr(new_obj, axis_name, new_ax) return new_obj def isin(self, values: Series | DataFrame | Sequence | Mapping) -> DataFrame: """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True To check if ``values`` is *not* in the DataFrame, use the ``~`` operator: >>> ~df.isin([0, 2]) num_legs num_wings falcon False False dog True False When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in other. >>> other = pd.DataFrame({'num_legs': [8, 3], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon False True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) result = concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with a duplicate axis.") result = self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with a duplicate axis.") result = self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are allowed " "to be passed to DataFrame.isin(), " f"you passed a '{type(values).__name__}'" ) def isin_(x): # error: Argument 2 to "isin" has incompatible type "Union[Series, # DataFrame, Sequence[Any], Mapping[Any, Any]]"; expected # "Union[Union[Union[ExtensionArray, ndarray[Any, Any]], Index, # Series], List[Any], range]" result = algorithms.isin( x.ravel(), values, # type: ignore[arg-type] ) return result.reshape(x.shape) res_mgr = self._mgr.apply(isin_) result = self._constructor_from_mgr( res_mgr, axes=res_mgr.axes, ) return result.__finalize__(self, method="isin") # ---------------------------------------------------------------------- # Add index and columns _AXIS_ORDERS: list[Literal["index", "columns"]] = ["index", "columns"] _AXIS_TO_AXIS_NUMBER: dict[Axis, int] = { **NDFrame._AXIS_TO_AXIS_NUMBER, 1: 1, "columns": 1, } _AXIS_LEN = len(_AXIS_ORDERS) _info_axis_number: Literal[1] = 1 _info_axis_name: Literal["columns"] = "columns" index = properties.AxisProperty( axis=1, doc=""" The index (row labels) of the DataFrame. The index of a DataFrame is a series of labels that identify each row. The labels can be integers, strings, or any other hashable type. The index is used for label-based access and alignment, and can be accessed or modified using this attribute. Returns ------- pandas.Index The index labels of the DataFrame. See Also -------- DataFrame.columns : The column labels of the DataFrame. DataFrame.to_numpy : Convert the DataFrame to a NumPy array. Examples -------- >>> df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Aritra'], ... 'Age': [25, 30, 35], ... 'Location': ['Seattle', 'New York', 'Kona']}, ... index=([10, 20, 30])) >>> df.index Index([10, 20, 30], dtype='int64') In this example, we create a DataFrame with 3 rows and 3 columns, including Name, Age, and Location information. We set the index labels to be the integers 10, 20, and 30. We then access the `index` attribute of the DataFrame, which returns an `Index` object containing the index labels. >>> df.index = [100, 200, 300] >>> df Name Age Location 100 Alice 25 Seattle 200 Bob 30 New York 300 Aritra 35 Kona In this example, we modify the index labels of the DataFrame by assigning a new list of labels to the `index` attribute. The DataFrame is then updated with the new labels, and the output shows the modified DataFrame. """, ) columns = properties.AxisProperty( axis=0, doc=dedent( """ The column labels of the DataFrame. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) >>> df A B 0 1 3 1 2 4 >>> df.columns Index(['A', 'B'], dtype='object') """ ), ) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) # ---------------------------------------------------------------------- # Internal Interface Methods def _to_dict_of_blocks(self): """ Return a dict of dtype -> Constructor Types that each is a homogeneous dtype. Internal ONLY - only works for BlockManager """ mgr = self._mgr # convert to BlockManager if needed -> this way support ArrayManager as well mgr = cast(BlockManager, mgr_to_mgr(mgr, "block")) return { k: self._constructor_from_mgr(v, axes=v.axes).__finalize__(self) for k, v, in mgr.to_dict().items() } @property def values(self) -> np.ndarray: """ Return a Numpy representation of the DataFrame. .. warning:: We recommend using :meth:`DataFrame.to_numpy` instead. Only the values in the DataFrame will be returned, the axes labels will be removed. Returns ------- numpy.ndarray The values of the DataFrame. See Also -------- DataFrame.to_numpy : Recommended alternative to this method. DataFrame.index : Retrieve the index labels. DataFrame.columns : Retrieving the column names. Notes ----- The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By :func:`numpy.find_common_type` convention, mixing int64 and uint64 will result in a float64 dtype. Examples -------- A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type. >>> df = pd.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]]) A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object). >>> df2 = pd.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 1), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object) """ return self._mgr.as_array() def _from_nested_dict(data) -> collections.defaultdict: new_data: collections.defaultdict = collections.defaultdict(dict) for index, s in data.items(): for col, v in s.items(): new_data[col][index] = v return new_data def _reindex_for_setitem( value: DataFrame | Series, index: Index ) -> tuple[ArrayLike, BlockValuesRefs | None]: # reindex if necessary if value.index.equals(index) or not len(index): if using_copy_on_write() and isinstance(value, Series): return value._values, value._references return value._values.copy(), None # GH#4107 try: reindexed_value = value.reindex(index)._values except ValueError as err: # raised in MultiIndex.from_tuples, see test_insert_error_msmgs if not value.index.is_unique: # duplicate axis raise err raise TypeError( "incompatible index of inserted column with frame index" ) from err return reindexed_value, None