from __future__ import annotations from collections import defaultdict from typing import TYPE_CHECKING import warnings import numpy as np from pandas._libs import ( lib, parsers, ) from pandas.compat._optional import import_optional_dependency from pandas.errors import DtypeWarning from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import pandas_dtype from pandas.core.dtypes.concat import ( concat_compat, union_categoricals, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.api import ensure_index_from_sequences from pandas.io.common import ( dedup_names, is_potential_multi_index, ) from pandas.io.parsers.base_parser import ( ParserBase, ParserError, is_index_col, ) if TYPE_CHECKING: from collections.abc import ( Hashable, Mapping, Sequence, ) from pandas._typing import ( ArrayLike, DtypeArg, DtypeObj, ReadCsvBuffer, ) from pandas import ( Index, MultiIndex, ) class CParserWrapper(ParserBase): low_memory: bool _reader: parsers.TextReader def __init__(self, src: ReadCsvBuffer[str], **kwds) -> None: super().__init__(kwds) self.kwds = kwds kwds = kwds.copy() self.low_memory = kwds.pop("low_memory", False) # #2442 # error: Cannot determine type of 'index_col' kwds["allow_leading_cols"] = ( self.index_col is not False # type: ignore[has-type] ) # GH20529, validate usecol arg before TextReader kwds["usecols"] = self.usecols # Have to pass int, would break tests using TextReader directly otherwise :( kwds["on_bad_lines"] = self.on_bad_lines.value for key in ( "storage_options", "encoding", "memory_map", "compression", ): kwds.pop(key, None) kwds["dtype"] = ensure_dtype_objs(kwds.get("dtype", None)) if "dtype_backend" not in kwds or kwds["dtype_backend"] is lib.no_default: kwds["dtype_backend"] = "numpy" if kwds["dtype_backend"] == "pyarrow": # Fail here loudly instead of in cython after reading import_optional_dependency("pyarrow") self._reader = parsers.TextReader(src, **kwds) self.unnamed_cols = self._reader.unnamed_cols # error: Cannot determine type of 'names' passed_names = self.names is None # type: ignore[has-type] if self._reader.header is None: self.names = None else: # error: Cannot determine type of 'names' # error: Cannot determine type of 'index_names' ( self.names, # type: ignore[has-type] self.index_names, self.col_names, passed_names, ) = self._extract_multi_indexer_columns( self._reader.header, self.index_names, # type: ignore[has-type] passed_names, ) # error: Cannot determine type of 'names' if self.names is None: # type: ignore[has-type] self.names = list(range(self._reader.table_width)) # gh-9755 # # need to set orig_names here first # so that proper indexing can be done # with _set_noconvert_columns # # once names has been filtered, we will # then set orig_names again to names # error: Cannot determine type of 'names' self.orig_names = self.names[:] # type: ignore[has-type] if self.usecols: usecols = self._evaluate_usecols(self.usecols, self.orig_names) # GH 14671 # assert for mypy, orig_names is List or None, None would error in issubset assert self.orig_names is not None if self.usecols_dtype == "string" and not set(usecols).issubset( self.orig_names ): self._validate_usecols_names(usecols, self.orig_names) # error: Cannot determine type of 'names' if len(self.names) > len(usecols): # type: ignore[has-type] # error: Cannot determine type of 'names' self.names = [ # type: ignore[has-type] n # error: Cannot determine type of 'names' for i, n in enumerate(self.names) # type: ignore[has-type] if (i in usecols or n in usecols) ] # error: Cannot determine type of 'names' if len(self.names) < len(usecols): # type: ignore[has-type] # error: Cannot determine type of 'names' self._validate_usecols_names( usecols, self.names, # type: ignore[has-type] ) # error: Cannot determine type of 'names' self._validate_parse_dates_presence(self.names) # type: ignore[has-type] self._set_noconvert_columns() # error: Cannot determine type of 'names' self.orig_names = self.names # type: ignore[has-type] if not self._has_complex_date_col: # error: Cannot determine type of 'index_col' if self._reader.leading_cols == 0 and is_index_col( self.index_col # type: ignore[has-type] ): self._name_processed = True ( index_names, # error: Cannot determine type of 'names' self.names, # type: ignore[has-type] self.index_col, ) = self._clean_index_names( # error: Cannot determine type of 'names' self.names, # type: ignore[has-type] # error: Cannot determine type of 'index_col' self.index_col, # type: ignore[has-type] ) if self.index_names is None: self.index_names = index_names if self._reader.header is None and not passed_names: assert self.index_names is not None self.index_names = [None] * len(self.index_names) self._implicit_index = self._reader.leading_cols > 0 def close(self) -> None: # close handles opened by C parser try: self._reader.close() except ValueError: pass def _set_noconvert_columns(self) -> None: """ Set the columns that should not undergo dtype conversions. Currently, any column that is involved with date parsing will not undergo such conversions. """ assert self.orig_names is not None # error: Cannot determine type of 'names' # much faster than using orig_names.index(x) xref GH#44106 names_dict = {x: i for i, x in enumerate(self.orig_names)} col_indices = [names_dict[x] for x in self.names] # type: ignore[has-type] # error: Cannot determine type of 'names' noconvert_columns = self._set_noconvert_dtype_columns( col_indices, self.names, # type: ignore[has-type] ) for col in noconvert_columns: self._reader.set_noconvert(col) def read( self, nrows: int | None = None, ) -> tuple[ Index | MultiIndex | None, Sequence[Hashable] | MultiIndex, Mapping[Hashable, ArrayLike], ]: index: Index | MultiIndex | None column_names: Sequence[Hashable] | MultiIndex try: if self.low_memory: chunks = self._reader.read_low_memory(nrows) # destructive to chunks data = _concatenate_chunks(chunks) else: data = self._reader.read(nrows) except StopIteration: if self._first_chunk: self._first_chunk = False names = dedup_names( self.orig_names, is_potential_multi_index(self.orig_names, self.index_col), ) index, columns, col_dict = self._get_empty_meta( names, dtype=self.dtype, ) columns = self._maybe_make_multi_index_columns(columns, self.col_names) if self.usecols is not None: columns = self._filter_usecols(columns) col_dict = {k: v for k, v in col_dict.items() if k in columns} return index, columns, col_dict else: self.close() raise # Done with first read, next time raise StopIteration self._first_chunk = False # error: Cannot determine type of 'names' names = self.names # type: ignore[has-type] if self._reader.leading_cols: if self._has_complex_date_col: raise NotImplementedError("file structure not yet supported") # implicit index, no index names arrays = [] if self.index_col and self._reader.leading_cols != len(self.index_col): raise ParserError( "Could not construct index. Requested to use " f"{len(self.index_col)} number of columns, but " f"{self._reader.leading_cols} left to parse." ) for i in range(self._reader.leading_cols): if self.index_col is None: values = data.pop(i) else: values = data.pop(self.index_col[i]) values = self._maybe_parse_dates(values, i, try_parse_dates=True) arrays.append(values) index = ensure_index_from_sequences(arrays) if self.usecols is not None: names = self._filter_usecols(names) names = dedup_names(names, is_potential_multi_index(names, self.index_col)) # rename dict keys data_tups = sorted(data.items()) data = {k: v for k, (i, v) in zip(names, data_tups)} column_names, date_data = self._do_date_conversions(names, data) # maybe create a mi on the columns column_names = self._maybe_make_multi_index_columns( column_names, self.col_names ) else: # rename dict keys data_tups = sorted(data.items()) # ugh, mutation # assert for mypy, orig_names is List or None, None would error in list(...) assert self.orig_names is not None names = list(self.orig_names) names = dedup_names(names, is_potential_multi_index(names, self.index_col)) if self.usecols is not None: names = self._filter_usecols(names) # columns as list alldata = [x[1] for x in data_tups] if self.usecols is None: self._check_data_length(names, alldata) data = {k: v for k, (i, v) in zip(names, data_tups)} names, date_data = self._do_date_conversions(names, data) index, column_names = self._make_index(date_data, alldata, names) return index, column_names, date_data def _filter_usecols(self, names: Sequence[Hashable]) -> Sequence[Hashable]: # hackish usecols = self._evaluate_usecols(self.usecols, names) if usecols is not None and len(names) != len(usecols): names = [ name for i, name in enumerate(names) if i in usecols or name in usecols ] return names def _maybe_parse_dates(self, values, index: int, try_parse_dates: bool = True): if try_parse_dates and self._should_parse_dates(index): values = self._date_conv( values, col=self.index_names[index] if self.index_names is not None else None, ) return values def _concatenate_chunks(chunks: list[dict[int, ArrayLike]]) -> dict: """ Concatenate chunks of data read with low_memory=True. The tricky part is handling Categoricals, where different chunks may have different inferred categories. """ names = list(chunks[0].keys()) warning_columns = [] result: dict = {} for name in names: arrs = [chunk.pop(name) for chunk in chunks] # Check each arr for consistent types. dtypes = {a.dtype for a in arrs} non_cat_dtypes = {x for x in dtypes if not isinstance(x, CategoricalDtype)} dtype = dtypes.pop() if isinstance(dtype, CategoricalDtype): result[name] = union_categoricals(arrs, sort_categories=False) else: result[name] = concat_compat(arrs) if len(non_cat_dtypes) > 1 and result[name].dtype == np.dtype(object): warning_columns.append(str(name)) if warning_columns: warning_names = ",".join(warning_columns) warning_message = " ".join( [ f"Columns ({warning_names}) have mixed types. " f"Specify dtype option on import or set low_memory=False." ] ) warnings.warn(warning_message, DtypeWarning, stacklevel=find_stack_level()) return result def ensure_dtype_objs( dtype: DtypeArg | dict[Hashable, DtypeArg] | None ) -> DtypeObj | dict[Hashable, DtypeObj] | None: """ Ensure we have either None, a dtype object, or a dictionary mapping to dtype objects. """ if isinstance(dtype, defaultdict): # "None" not callable [misc] default_dtype = pandas_dtype(dtype.default_factory()) # type: ignore[misc] dtype_converted: defaultdict = defaultdict(lambda: default_dtype) for key in dtype.keys(): dtype_converted[key] = pandas_dtype(dtype[key]) return dtype_converted elif isinstance(dtype, dict): return {k: pandas_dtype(dtype[k]) for k in dtype} elif dtype is not None: return pandas_dtype(dtype) return dtype