import numpy as np import pytest import pandas as pd import pandas._testing as tm @pytest.mark.parametrize( "ufunc", [np.add, np.logical_or, np.logical_and, np.logical_xor] ) def test_ufuncs_binary(ufunc): # two BooleanArrays a = pd.array([True, False, None], dtype="boolean") result = ufunc(a, a) expected = pd.array(ufunc(a._data, a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) s = pd.Series(a) result = ufunc(s, a) expected = pd.Series(ufunc(a._data, a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_series_equal(result, expected) # Boolean with numpy array arr = np.array([True, True, False]) result = ufunc(a, arr) expected = pd.array(ufunc(a._data, arr), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) result = ufunc(arr, a) expected = pd.array(ufunc(arr, a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) # BooleanArray with scalar result = ufunc(a, True) expected = pd.array(ufunc(a._data, True), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) result = ufunc(True, a) expected = pd.array(ufunc(True, a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) # not handled types msg = r"operand type\(s\) all returned NotImplemented from __array_ufunc__" with pytest.raises(TypeError, match=msg): ufunc(a, "test") @pytest.mark.parametrize("ufunc", [np.logical_not]) def test_ufuncs_unary(ufunc): a = pd.array([True, False, None], dtype="boolean") result = ufunc(a) expected = pd.array(ufunc(a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_extension_array_equal(result, expected) ser = pd.Series(a) result = ufunc(ser) expected = pd.Series(ufunc(a._data), dtype="boolean") expected[a._mask] = np.nan tm.assert_series_equal(result, expected) def test_ufunc_numeric(): # np.sqrt on np.bool_ returns float16, which we upcast to Float32 # bc we do not have Float16 arr = pd.array([True, False, None], dtype="boolean") res = np.sqrt(arr) expected = pd.array([1, 0, None], dtype="Float32") tm.assert_extension_array_equal(res, expected) @pytest.mark.parametrize("values", [[True, False], [True, None]]) def test_ufunc_reduce_raises(values): arr = pd.array(values, dtype="boolean") res = np.add.reduce(arr) if arr[-1] is pd.NA: expected = pd.NA else: expected = arr._data.sum() tm.assert_almost_equal(res, expected) def test_value_counts_na(): arr = pd.array([True, False, pd.NA], dtype="boolean") result = arr.value_counts(dropna=False) expected = pd.Series([1, 1, 1], index=arr, dtype="Int64", name="count") assert expected.index.dtype == arr.dtype tm.assert_series_equal(result, expected) result = arr.value_counts(dropna=True) expected = pd.Series([1, 1], index=arr[:-1], dtype="Int64", name="count") assert expected.index.dtype == arr.dtype tm.assert_series_equal(result, expected) def test_value_counts_with_normalize(): ser = pd.Series([True, False, pd.NA], dtype="boolean") result = ser.value_counts(normalize=True) expected = pd.Series([1, 1], index=ser[:-1], dtype="Float64", name="proportion") / 2 assert expected.index.dtype == "boolean" tm.assert_series_equal(result, expected) def test_diff(): a = pd.array( [True, True, False, False, True, None, True, None, False], dtype="boolean" ) result = pd.core.algorithms.diff(a, 1) expected = pd.array( [None, False, True, False, True, None, None, None, None], dtype="boolean" ) tm.assert_extension_array_equal(result, expected) ser = pd.Series(a) result = ser.diff() expected = pd.Series(expected) tm.assert_series_equal(result, expected)