import numpy as np import pytest import pandas as pd @pytest.fixture def data(): """Fixture returning boolean array, with valid and missing values.""" return pd.array( [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False], dtype="boolean", ) @pytest.mark.parametrize( "values, exp_any, exp_all, exp_any_noskip, exp_all_noskip", [ ([True, pd.NA], True, True, True, pd.NA), ([False, pd.NA], False, False, pd.NA, False), ([pd.NA], False, True, pd.NA, pd.NA), ([], False, True, False, True), # GH-33253: all True / all False values buggy with skipna=False ([True, True], True, True, True, True), ([False, False], False, False, False, False), ], ) def test_any_all(values, exp_any, exp_all, exp_any_noskip, exp_all_noskip): # the methods return numpy scalars exp_any = pd.NA if exp_any is pd.NA else np.bool_(exp_any) exp_all = pd.NA if exp_all is pd.NA else np.bool_(exp_all) exp_any_noskip = pd.NA if exp_any_noskip is pd.NA else np.bool_(exp_any_noskip) exp_all_noskip = pd.NA if exp_all_noskip is pd.NA else np.bool_(exp_all_noskip) for con in [pd.array, pd.Series]: a = con(values, dtype="boolean") assert a.any() is exp_any assert a.all() is exp_all assert a.any(skipna=False) is exp_any_noskip assert a.all(skipna=False) is exp_all_noskip assert np.any(a.any()) is exp_any assert np.all(a.all()) is exp_all @pytest.mark.parametrize("dropna", [True, False]) def test_reductions_return_types(dropna, data, all_numeric_reductions): op = all_numeric_reductions s = pd.Series(data) if dropna: s = s.dropna() if op in ("sum", "prod"): assert isinstance(getattr(s, op)(), np.int_) elif op == "count": # Oddly on the 32 bit build (but not Windows), this is intc (!= intp) assert isinstance(getattr(s, op)(), np.integer) elif op in ("min", "max"): assert isinstance(getattr(s, op)(), np.bool_) else: # "mean", "std", "var", "median", "kurt", "skew" assert isinstance(getattr(s, op)(), np.float64)