import numpy as np import pytest import pandas as pd from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (UInt32Dtype(), "UInt32Dtype()"), (UInt64Dtype(), "UInt64Dtype()"), ], ) def test_repr_dtype(dtype, expected): assert repr(dtype) == expected def test_repr_array(): result = repr(pd.array([1, None, 3])) expected = "\n[1, , 3]\nLength: 3, dtype: Int64" assert result == expected def test_repr_array_long(): data = pd.array([1, 2, None] * 1000) expected = ( "\n" "[ 1, 2, , 1, 2, , 1, 2, , 1,\n" " ...\n" " , 1, 2, , 1, 2, , 1, 2, ]\n" "Length: 3000, dtype: Int64" ) result = repr(data) assert result == expected def test_frame_repr(data_missing): df = pd.DataFrame({"A": data_missing}) result = repr(df) expected = " A\n0 \n1 1" assert result == expected