import re import pytest from pandas.core.dtypes.common import ( is_bool_dtype, is_numeric_dtype, is_object_dtype, is_string_dtype, ) import pandas as pd import pandas._testing as tm @pytest.mark.filterwarnings( "ignore:The default of observed=False is deprecated:FutureWarning" ) class BaseGroupbyTests: """Groupby-specific tests.""" def test_grouping_grouper(self, data_for_grouping): df = pd.DataFrame( { "A": pd.Series( ["B", "B", None, None, "A", "A", "B", "C"], dtype=object ), "B": data_for_grouping, } ) gr1 = df.groupby("A")._grouper.groupings[0] gr2 = df.groupby("B")._grouper.groupings[0] tm.assert_numpy_array_equal(gr1.grouping_vector, df.A.values) tm.assert_extension_array_equal(gr2.grouping_vector, data_for_grouping) @pytest.mark.parametrize("as_index", [True, False]) def test_groupby_extension_agg(self, as_index, data_for_grouping): df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) is_bool = data_for_grouping.dtype._is_boolean if is_bool: # only 2 unique values, and the final entry has c==b # (see data_for_grouping docstring) df = df.iloc[:-1] result = df.groupby("B", as_index=as_index).A.mean() _, uniques = pd.factorize(data_for_grouping, sort=True) exp_vals = [3.0, 1.0, 4.0] if is_bool: exp_vals = exp_vals[:-1] if as_index: index = pd.Index(uniques, name="B") expected = pd.Series(exp_vals, index=index, name="A") tm.assert_series_equal(result, expected) else: expected = pd.DataFrame({"B": uniques, "A": exp_vals}) tm.assert_frame_equal(result, expected) def test_groupby_agg_extension(self, data_for_grouping): # GH#38980 groupby agg on extension type fails for non-numeric types df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) expected = df.iloc[[0, 2, 4, 7]] expected = expected.set_index("A") result = df.groupby("A").agg({"B": "first"}) tm.assert_frame_equal(result, expected) result = df.groupby("A").agg("first") tm.assert_frame_equal(result, expected) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) def test_groupby_extension_no_sort(self, data_for_grouping): df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) is_bool = data_for_grouping.dtype._is_boolean if is_bool: # only 2 unique values, and the final entry has c==b # (see data_for_grouping docstring) df = df.iloc[:-1] result = df.groupby("B", sort=False).A.mean() _, index = pd.factorize(data_for_grouping, sort=False) index = pd.Index(index, name="B") exp_vals = [1.0, 3.0, 4.0] if is_bool: exp_vals = exp_vals[:-1] expected = pd.Series(exp_vals, index=index, name="A") tm.assert_series_equal(result, expected) def test_groupby_extension_transform(self, data_for_grouping): is_bool = data_for_grouping.dtype._is_boolean valid = data_for_grouping[~data_for_grouping.isna()] df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid}) is_bool = data_for_grouping.dtype._is_boolean if is_bool: # only 2 unique values, and the final entry has c==b # (see data_for_grouping docstring) df = df.iloc[:-1] result = df.groupby("B").A.transform(len) expected = pd.Series([3, 3, 2, 2, 3, 1], name="A") if is_bool: expected = expected[:-1] tm.assert_series_equal(result, expected) def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op): df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) msg = "DataFrameGroupBy.apply operated on the grouping columns" with tm.assert_produces_warning(DeprecationWarning, match=msg): df.groupby("B", group_keys=False, observed=False).apply(groupby_apply_op) df.groupby("B", group_keys=False, observed=False).A.apply(groupby_apply_op) msg = "DataFrameGroupBy.apply operated on the grouping columns" with tm.assert_produces_warning(DeprecationWarning, match=msg): df.groupby("A", group_keys=False, observed=False).apply(groupby_apply_op) df.groupby("A", group_keys=False, observed=False).B.apply(groupby_apply_op) def test_groupby_apply_identity(self, data_for_grouping): df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping}) result = df.groupby("A").B.apply(lambda x: x.array) expected = pd.Series( [ df.B.iloc[[0, 1, 6]].array, df.B.iloc[[2, 3]].array, df.B.iloc[[4, 5]].array, df.B.iloc[[7]].array, ], index=pd.Index([1, 2, 3, 4], name="A"), name="B", ) tm.assert_series_equal(result, expected) def test_in_numeric_groupby(self, data_for_grouping): df = pd.DataFrame( { "A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping, "C": [1, 1, 1, 1, 1, 1, 1, 1], } ) dtype = data_for_grouping.dtype if ( is_numeric_dtype(dtype) or is_bool_dtype(dtype) or dtype.name == "decimal" or is_string_dtype(dtype) or is_object_dtype(dtype) or dtype.kind == "m" # in particular duration[*][pyarrow] ): expected = pd.Index(["B", "C"]) result = df.groupby("A").sum().columns else: expected = pd.Index(["C"]) msg = "|".join( [ # period/datetime "does not support sum operations", # all others re.escape(f"agg function failed [how->sum,dtype->{dtype}"), ] ) with pytest.raises(TypeError, match=msg): df.groupby("A").sum() result = df.groupby("A").sum(numeric_only=True).columns tm.assert_index_equal(result, expected)