""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ from __future__ import annotations from datetime import ( date, datetime, time, timedelta, ) from decimal import Decimal from io import ( BytesIO, StringIO, ) import operator import pickle import re import numpy as np import pytest from pandas._libs import lib from pandas._libs.tslibs import timezones from pandas.compat import ( PY311, PY312, is_ci_environment, is_platform_windows, pa_version_under11p0, pa_version_under13p0, pa_version_under14p0, ) import pandas.util._test_decorators as td from pandas.core.dtypes.dtypes import ( ArrowDtype, CategoricalDtypeType, ) import pandas as pd import pandas._testing as tm from pandas.api.extensions import no_default from pandas.api.types import ( is_bool_dtype, is_float_dtype, is_integer_dtype, is_numeric_dtype, is_signed_integer_dtype, is_string_dtype, is_unsigned_integer_dtype, ) from pandas.tests.extension import base pa = pytest.importorskip("pyarrow") from pandas.core.arrays.arrow.array import ArrowExtensionArray from pandas.core.arrays.arrow.extension_types import ArrowPeriodType def _require_timezone_database(request): if is_platform_windows() and is_ci_environment(): mark = pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( "TODO: Set ARROW_TIMEZONE_DATABASE environment variable " "on CI to path to the tzdata for pyarrow." ), ) request.applymarker(mark) @pytest.fixture(params=tm.ALL_PYARROW_DTYPES, ids=str) def dtype(request): return ArrowDtype(pyarrow_dtype=request.param) @pytest.fixture def data(dtype): pa_dtype = dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): data = [True, False] * 4 + [None] + [True, False] * 44 + [None] + [True, False] elif pa.types.is_floating(pa_dtype): data = [1.0, 0.0] * 4 + [None] + [-2.0, -1.0] * 44 + [None] + [0.5, 99.5] elif pa.types.is_signed_integer(pa_dtype): data = [1, 0] * 4 + [None] + [-2, -1] * 44 + [None] + [1, 99] elif pa.types.is_unsigned_integer(pa_dtype): data = [1, 0] * 4 + [None] + [2, 1] * 44 + [None] + [1, 99] elif pa.types.is_decimal(pa_dtype): data = ( [Decimal("1"), Decimal("0.0")] * 4 + [None] + [Decimal("-2.0"), Decimal("-1.0")] * 44 + [None] + [Decimal("0.5"), Decimal("33.123")] ) elif pa.types.is_date(pa_dtype): data = ( [date(2022, 1, 1), date(1999, 12, 31)] * 4 + [None] + [date(2022, 1, 1), date(2022, 1, 1)] * 44 + [None] + [date(1999, 12, 31), date(1999, 12, 31)] ) elif pa.types.is_timestamp(pa_dtype): data = ( [datetime(2020, 1, 1, 1, 1, 1, 1), datetime(1999, 1, 1, 1, 1, 1, 1)] * 4 + [None] + [datetime(2020, 1, 1, 1), datetime(1999, 1, 1, 1)] * 44 + [None] + [datetime(2020, 1, 1), datetime(1999, 1, 1)] ) elif pa.types.is_duration(pa_dtype): data = ( [timedelta(1), timedelta(1, 1)] * 4 + [None] + [timedelta(-1), timedelta(0)] * 44 + [None] + [timedelta(-10), timedelta(10)] ) elif pa.types.is_time(pa_dtype): data = ( [time(12, 0), time(0, 12)] * 4 + [None] + [time(0, 0), time(1, 1)] * 44 + [None] + [time(0, 5), time(5, 0)] ) elif pa.types.is_string(pa_dtype): data = ["a", "b"] * 4 + [None] + ["1", "2"] * 44 + [None] + ["!", ">"] elif pa.types.is_binary(pa_dtype): data = [b"a", b"b"] * 4 + [None] + [b"1", b"2"] * 44 + [None] + [b"!", b">"] else: raise NotImplementedError return pd.array(data, dtype=dtype) @pytest.fixture def data_missing(data): """Length-2 array with [NA, Valid]""" return type(data)._from_sequence([None, data[0]], dtype=data.dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture returning 'data' or 'data_missing' integer arrays. Used to test dtype conversion with and without missing values. """ if request.param == "data": return data elif request.param == "data_missing": return data_missing @pytest.fixture def data_for_grouping(dtype): """ Data for factorization, grouping, and unique tests. Expected to be like [B, B, NA, NA, A, A, B, C] Where A < B < C and NA is missing """ pa_dtype = dtype.pyarrow_dtype if pa.types.is_boolean(pa_dtype): A = False B = True C = True elif pa.types.is_floating(pa_dtype): A = -1.1 B = 0.0 C = 1.1 elif pa.types.is_signed_integer(pa_dtype): A = -1 B = 0 C = 1 elif pa.types.is_unsigned_integer(pa_dtype): A = 0 B = 1 C = 10 elif pa.types.is_date(pa_dtype): A = date(1999, 12, 31) B = date(2010, 1, 1) C = date(2022, 1, 1) elif pa.types.is_timestamp(pa_dtype): A = datetime(1999, 1, 1, 1, 1, 1, 1) B = datetime(2020, 1, 1) C = datetime(2020, 1, 1, 1) elif pa.types.is_duration(pa_dtype): A = timedelta(-1) B = timedelta(0) C = timedelta(1, 4) elif pa.types.is_time(pa_dtype): A = time(0, 0) B = time(0, 12) C = time(12, 12) elif pa.types.is_string(pa_dtype): A = "a" B = "b" C = "c" elif pa.types.is_binary(pa_dtype): A = b"a" B = b"b" C = b"c" elif pa.types.is_decimal(pa_dtype): A = Decimal("-1.1") B = Decimal("0.0") C = Decimal("1.1") else: raise NotImplementedError return pd.array([B, B, None, None, A, A, B, C], dtype=dtype) @pytest.fixture def data_for_sorting(data_for_grouping): """ Length-3 array with a known sort order. This should be three items [B, C, A] with A < B < C """ return type(data_for_grouping)._from_sequence( [data_for_grouping[0], data_for_grouping[7], data_for_grouping[4]], dtype=data_for_grouping.dtype, ) @pytest.fixture def data_missing_for_sorting(data_for_grouping): """ Length-3 array with a known sort order. This should be three items [B, NA, A] with A < B and NA missing. """ return type(data_for_grouping)._from_sequence( [data_for_grouping[0], data_for_grouping[2], data_for_grouping[4]], dtype=data_for_grouping.dtype, ) @pytest.fixture def data_for_twos(data): """Length-100 array in which all the elements are two.""" pa_dtype = data.dtype.pyarrow_dtype if ( pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype) or pa.types.is_decimal(pa_dtype) or pa.types.is_duration(pa_dtype) ): return pd.array([2] * 100, dtype=data.dtype) # tests will be xfailed where 2 is not a valid scalar for pa_dtype return data # TODO: skip otherwise? class TestArrowArray(base.ExtensionTests): def test_compare_scalar(self, data, comparison_op): ser = pd.Series(data) self._compare_other(ser, data, comparison_op, data[0]) @pytest.mark.parametrize("na_action", [None, "ignore"]) def test_map(self, data_missing, na_action): if data_missing.dtype.kind in "mM": result = data_missing.map(lambda x: x, na_action=na_action) expected = data_missing.to_numpy(dtype=object) tm.assert_numpy_array_equal(result, expected) else: result = data_missing.map(lambda x: x, na_action=na_action) if data_missing.dtype == "float32[pyarrow]": # map roundtrips through objects, which converts to float64 expected = data_missing.to_numpy(dtype="float64", na_value=np.nan) else: expected = data_missing.to_numpy() tm.assert_numpy_array_equal(result, expected) def test_astype_str(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_binary(pa_dtype): request.applymarker( pytest.mark.xfail( reason=f"For {pa_dtype} .astype(str) decodes.", ) ) elif ( pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is None ) or pa.types.is_duration(pa_dtype): request.applymarker( pytest.mark.xfail( reason="pd.Timestamp/pd.Timedelta repr different from numpy repr", ) ) super().test_astype_str(data) @pytest.mark.parametrize( "nullable_string_dtype", [ "string[python]", pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")), ], ) def test_astype_string(self, data, nullable_string_dtype, request): pa_dtype = data.dtype.pyarrow_dtype if ( pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is None ) or pa.types.is_duration(pa_dtype): request.applymarker( pytest.mark.xfail( reason="pd.Timestamp/pd.Timedelta repr different from numpy repr", ) ) super().test_astype_string(data, nullable_string_dtype) def test_from_dtype(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_string(pa_dtype) or pa.types.is_decimal(pa_dtype): if pa.types.is_string(pa_dtype): reason = "ArrowDtype(pa.string()) != StringDtype('pyarrow')" else: reason = f"pyarrow.type_for_alias cannot infer {pa_dtype}" request.applymarker( pytest.mark.xfail( reason=reason, ) ) super().test_from_dtype(data) def test_from_sequence_pa_array(self, data): # https://github.com/pandas-dev/pandas/pull/47034#discussion_r955500784 # data._pa_array = pa.ChunkedArray result = type(data)._from_sequence(data._pa_array, dtype=data.dtype) tm.assert_extension_array_equal(result, data) assert isinstance(result._pa_array, pa.ChunkedArray) result = type(data)._from_sequence( data._pa_array.combine_chunks(), dtype=data.dtype ) tm.assert_extension_array_equal(result, data) assert isinstance(result._pa_array, pa.ChunkedArray) def test_from_sequence_pa_array_notimplemented(self, request): with pytest.raises(NotImplementedError, match="Converting strings to"): ArrowExtensionArray._from_sequence_of_strings( ["12-1"], dtype=pa.month_day_nano_interval() ) def test_from_sequence_of_strings_pa_array(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_time64(pa_dtype) and pa_dtype.equals("time64[ns]") and not PY311: request.applymarker( pytest.mark.xfail( reason="Nanosecond time parsing not supported.", ) ) elif pa_version_under11p0 and ( pa.types.is_duration(pa_dtype) or pa.types.is_decimal(pa_dtype) ): request.applymarker( pytest.mark.xfail( raises=pa.ArrowNotImplementedError, reason=f"pyarrow doesn't support parsing {pa_dtype}", ) ) elif pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is not None: _require_timezone_database(request) pa_array = data._pa_array.cast(pa.string()) result = type(data)._from_sequence_of_strings(pa_array, dtype=data.dtype) tm.assert_extension_array_equal(result, data) pa_array = pa_array.combine_chunks() result = type(data)._from_sequence_of_strings(pa_array, dtype=data.dtype) tm.assert_extension_array_equal(result, data) def check_accumulate(self, ser, op_name, skipna): result = getattr(ser, op_name)(skipna=skipna) pa_type = ser.dtype.pyarrow_dtype if pa.types.is_temporal(pa_type): # Just check that we match the integer behavior. if pa_type.bit_width == 32: int_type = "int32[pyarrow]" else: int_type = "int64[pyarrow]" ser = ser.astype(int_type) result = result.astype(int_type) result = result.astype("Float64") expected = getattr(ser.astype("Float64"), op_name)(skipna=skipna) tm.assert_series_equal(result, expected, check_dtype=False) def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool: # error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no # attribute "pyarrow_dtype" pa_type = ser.dtype.pyarrow_dtype # type: ignore[union-attr] if ( pa.types.is_string(pa_type) or pa.types.is_binary(pa_type) or pa.types.is_decimal(pa_type) ): if op_name in ["cumsum", "cumprod", "cummax", "cummin"]: return False elif pa.types.is_boolean(pa_type): if op_name in ["cumprod", "cummax", "cummin"]: return False elif pa.types.is_temporal(pa_type): if op_name == "cumsum" and not pa.types.is_duration(pa_type): return False elif op_name == "cumprod": return False return True @pytest.mark.parametrize("skipna", [True, False]) def test_accumulate_series(self, data, all_numeric_accumulations, skipna, request): pa_type = data.dtype.pyarrow_dtype op_name = all_numeric_accumulations ser = pd.Series(data) if not self._supports_accumulation(ser, op_name): # The base class test will check that we raise return super().test_accumulate_series( data, all_numeric_accumulations, skipna ) if pa_version_under13p0 and all_numeric_accumulations != "cumsum": # xfailing takes a long time to run because pytest # renders the exception messages even when not showing them opt = request.config.option if opt.markexpr and "not slow" in opt.markexpr: pytest.skip( f"{all_numeric_accumulations} not implemented for pyarrow < 9" ) mark = pytest.mark.xfail( reason=f"{all_numeric_accumulations} not implemented for pyarrow < 9" ) request.applymarker(mark) elif all_numeric_accumulations == "cumsum" and ( pa.types.is_boolean(pa_type) or pa.types.is_decimal(pa_type) ): request.applymarker( pytest.mark.xfail( reason=f"{all_numeric_accumulations} not implemented for {pa_type}", raises=NotImplementedError, ) ) self.check_accumulate(ser, op_name, skipna) def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool: dtype = ser.dtype # error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has # no attribute "pyarrow_dtype" pa_dtype = dtype.pyarrow_dtype # type: ignore[union-attr] if pa.types.is_temporal(pa_dtype) and op_name in [ "sum", "var", "skew", "kurt", "prod", ]: if pa.types.is_duration(pa_dtype) and op_name in ["sum"]: # summing timedeltas is one case that *is* well-defined pass else: return False elif ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) ) and op_name in [ "sum", "mean", "median", "prod", "std", "sem", "var", "skew", "kurt", ]: return False if ( pa.types.is_temporal(pa_dtype) and not pa.types.is_duration(pa_dtype) and op_name in ["any", "all"] ): # xref GH#34479 we support this in our non-pyarrow datetime64 dtypes, # but it isn't obvious we _should_. For now, we keep the pyarrow # behavior which does not support this. return False return True def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool): # error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no # attribute "pyarrow_dtype" pa_dtype = ser.dtype.pyarrow_dtype # type: ignore[union-attr] if pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype): alt = ser.astype("Float64") else: # TODO: in the opposite case, aren't we testing... nothing? For # e.g. date/time dtypes trying to calculate 'expected' by converting # to object will raise for mean, std etc alt = ser # TODO: in the opposite case, aren't we testing... nothing? if op_name == "count": result = getattr(ser, op_name)() expected = getattr(alt, op_name)() else: result = getattr(ser, op_name)(skipna=skipna) expected = getattr(alt, op_name)(skipna=skipna) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("skipna", [True, False]) def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna, request): dtype = data.dtype pa_dtype = dtype.pyarrow_dtype xfail_mark = pytest.mark.xfail( raises=TypeError, reason=( f"{all_numeric_reductions} is not implemented in " f"pyarrow={pa.__version__} for {pa_dtype}" ), ) if all_numeric_reductions in {"skew", "kurt"} and ( dtype._is_numeric or dtype.kind == "b" ): request.applymarker(xfail_mark) elif pa.types.is_boolean(pa_dtype) and all_numeric_reductions in { "sem", "std", "var", "median", }: request.applymarker(xfail_mark) super().test_reduce_series_numeric(data, all_numeric_reductions, skipna) @pytest.mark.parametrize("skipna", [True, False]) def test_reduce_series_boolean( self, data, all_boolean_reductions, skipna, na_value, request ): pa_dtype = data.dtype.pyarrow_dtype xfail_mark = pytest.mark.xfail( raises=TypeError, reason=( f"{all_boolean_reductions} is not implemented in " f"pyarrow={pa.__version__} for {pa_dtype}" ), ) if pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype): # We *might* want to make this behave like the non-pyarrow cases, # but have not yet decided. request.applymarker(xfail_mark) return super().test_reduce_series_boolean(data, all_boolean_reductions, skipna) def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool): if op_name in ["max", "min"]: cmp_dtype = arr.dtype elif arr.dtype.name == "decimal128(7, 3)[pyarrow]": if op_name not in ["median", "var", "std"]: cmp_dtype = arr.dtype else: cmp_dtype = "float64[pyarrow]" elif op_name in ["median", "var", "std", "mean", "skew"]: cmp_dtype = "float64[pyarrow]" else: cmp_dtype = { "i": "int64[pyarrow]", "u": "uint64[pyarrow]", "f": "float64[pyarrow]", }[arr.dtype.kind] return cmp_dtype @pytest.mark.parametrize("skipna", [True, False]) def test_reduce_frame(self, data, all_numeric_reductions, skipna, request): op_name = all_numeric_reductions if op_name == "skew": if data.dtype._is_numeric: mark = pytest.mark.xfail(reason="skew not implemented") request.applymarker(mark) return super().test_reduce_frame(data, all_numeric_reductions, skipna) @pytest.mark.parametrize("typ", ["int64", "uint64", "float64"]) def test_median_not_approximate(self, typ): # GH 52679 result = pd.Series([1, 2], dtype=f"{typ}[pyarrow]").median() assert result == 1.5 def test_in_numeric_groupby(self, data_for_grouping): dtype = data_for_grouping.dtype if is_string_dtype(dtype): df = pd.DataFrame( { "A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping, "C": [1, 1, 1, 1, 1, 1, 1, 1], } ) expected = pd.Index(["C"]) msg = re.escape(f"agg function failed [how->sum,dtype->{dtype}") with pytest.raises(TypeError, match=msg): df.groupby("A").sum() result = df.groupby("A").sum(numeric_only=True).columns tm.assert_index_equal(result, expected) else: super().test_in_numeric_groupby(data_for_grouping) def test_construct_from_string_own_name(self, dtype, request): pa_dtype = dtype.pyarrow_dtype if pa.types.is_decimal(pa_dtype): request.applymarker( pytest.mark.xfail( raises=NotImplementedError, reason=f"pyarrow.type_for_alias cannot infer {pa_dtype}", ) ) if pa.types.is_string(pa_dtype): # We still support StringDtype('pyarrow') over ArrowDtype(pa.string()) msg = r"string\[pyarrow\] should be constructed by StringDtype" with pytest.raises(TypeError, match=msg): dtype.construct_from_string(dtype.name) return super().test_construct_from_string_own_name(dtype) def test_is_dtype_from_name(self, dtype, request): pa_dtype = dtype.pyarrow_dtype if pa.types.is_string(pa_dtype): # We still support StringDtype('pyarrow') over ArrowDtype(pa.string()) assert not type(dtype).is_dtype(dtype.name) else: if pa.types.is_decimal(pa_dtype): request.applymarker( pytest.mark.xfail( raises=NotImplementedError, reason=f"pyarrow.type_for_alias cannot infer {pa_dtype}", ) ) super().test_is_dtype_from_name(dtype) def test_construct_from_string_another_type_raises(self, dtype): msg = r"'another_type' must end with '\[pyarrow\]'" with pytest.raises(TypeError, match=msg): type(dtype).construct_from_string("another_type") def test_get_common_dtype(self, dtype, request): pa_dtype = dtype.pyarrow_dtype if ( pa.types.is_date(pa_dtype) or pa.types.is_time(pa_dtype) or (pa.types.is_timestamp(pa_dtype) and pa_dtype.tz is not None) or pa.types.is_binary(pa_dtype) or pa.types.is_decimal(pa_dtype) ): request.applymarker( pytest.mark.xfail( reason=( f"{pa_dtype} does not have associated numpy " f"dtype findable by find_common_type" ) ) ) super().test_get_common_dtype(dtype) def test_is_not_string_type(self, dtype): pa_dtype = dtype.pyarrow_dtype if pa.types.is_string(pa_dtype): assert is_string_dtype(dtype) else: super().test_is_not_string_type(dtype) @pytest.mark.xfail( reason="GH 45419: pyarrow.ChunkedArray does not support views.", run=False ) def test_view(self, data): super().test_view(data) def test_fillna_no_op_returns_copy(self, data): data = data[~data.isna()] valid = data[0] result = data.fillna(valid) assert result is not data tm.assert_extension_array_equal(result, data) result = data.fillna(method="backfill") assert result is not data tm.assert_extension_array_equal(result, data) @pytest.mark.xfail( reason="GH 45419: pyarrow.ChunkedArray does not support views", run=False ) def test_transpose(self, data): super().test_transpose(data) @pytest.mark.xfail( reason="GH 45419: pyarrow.ChunkedArray does not support views", run=False ) def test_setitem_preserves_views(self, data): super().test_setitem_preserves_views(data) @pytest.mark.parametrize("dtype_backend", ["pyarrow", no_default]) @pytest.mark.parametrize("engine", ["c", "python"]) def test_EA_types(self, engine, data, dtype_backend, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_decimal(pa_dtype): request.applymarker( pytest.mark.xfail( raises=NotImplementedError, reason=f"Parameterized types {pa_dtype} not supported.", ) ) elif pa.types.is_timestamp(pa_dtype) and pa_dtype.unit in ("us", "ns"): request.applymarker( pytest.mark.xfail( raises=ValueError, reason="https://github.com/pandas-dev/pandas/issues/49767", ) ) elif pa.types.is_binary(pa_dtype): request.applymarker( pytest.mark.xfail(reason="CSV parsers don't correctly handle binary") ) df = pd.DataFrame({"with_dtype": pd.Series(data, dtype=str(data.dtype))}) csv_output = df.to_csv(index=False, na_rep=np.nan) if pa.types.is_binary(pa_dtype): csv_output = BytesIO(csv_output) else: csv_output = StringIO(csv_output) result = pd.read_csv( csv_output, dtype={"with_dtype": str(data.dtype)}, engine=engine, dtype_backend=dtype_backend, ) expected = df tm.assert_frame_equal(result, expected) def test_invert(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if not ( pa.types.is_boolean(pa_dtype) or pa.types.is_integer(pa_dtype) or pa.types.is_string(pa_dtype) ): request.applymarker( pytest.mark.xfail( raises=pa.ArrowNotImplementedError, reason=f"pyarrow.compute.invert does support {pa_dtype}", ) ) if PY312 and pa.types.is_boolean(pa_dtype): with tm.assert_produces_warning( DeprecationWarning, match="Bitwise inversion", check_stacklevel=False ): super().test_invert(data) else: super().test_invert(data) @pytest.mark.parametrize("periods", [1, -2]) def test_diff(self, data, periods, request): pa_dtype = data.dtype.pyarrow_dtype if pa.types.is_unsigned_integer(pa_dtype) and periods == 1: request.applymarker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( f"diff with {pa_dtype} and periods={periods} will overflow" ), ) ) super().test_diff(data, periods) def test_value_counts_returns_pyarrow_int64(self, data): # GH 51462 data = data[:10] result = data.value_counts() assert result.dtype == ArrowDtype(pa.int64()) _combine_le_expected_dtype = "bool[pyarrow]" divmod_exc = NotImplementedError def get_op_from_name(self, op_name): short_opname = op_name.strip("_") if short_opname == "rtruediv": # use the numpy version that won't raise on division by zero def rtruediv(x, y): return np.divide(y, x) return rtruediv elif short_opname == "rfloordiv": return lambda x, y: np.floor_divide(y, x) return tm.get_op_from_name(op_name) def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result): # BaseOpsUtil._combine can upcast expected dtype # (because it generates expected on python scalars) # while ArrowExtensionArray maintains original type expected = pointwise_result if op_name in ["eq", "ne", "lt", "le", "gt", "ge"]: return pointwise_result.astype("boolean[pyarrow]") was_frame = False if isinstance(expected, pd.DataFrame): was_frame = True expected_data = expected.iloc[:, 0] original_dtype = obj.iloc[:, 0].dtype else: expected_data = expected original_dtype = obj.dtype orig_pa_type = original_dtype.pyarrow_dtype if not was_frame and isinstance(other, pd.Series): # i.e. test_arith_series_with_array if not ( pa.types.is_floating(orig_pa_type) or ( pa.types.is_integer(orig_pa_type) and op_name not in ["__truediv__", "__rtruediv__"] ) or pa.types.is_duration(orig_pa_type) or pa.types.is_timestamp(orig_pa_type) or pa.types.is_date(orig_pa_type) or pa.types.is_decimal(orig_pa_type) ): # base class _combine always returns int64, while # ArrowExtensionArray does not upcast return expected elif not ( (op_name == "__floordiv__" and pa.types.is_integer(orig_pa_type)) or pa.types.is_duration(orig_pa_type) or pa.types.is_timestamp(orig_pa_type) or pa.types.is_date(orig_pa_type) or pa.types.is_decimal(orig_pa_type) ): # base class _combine always returns int64, while # ArrowExtensionArray does not upcast return expected pa_expected = pa.array(expected_data._values) if pa.types.is_duration(pa_expected.type): if pa.types.is_date(orig_pa_type): if pa.types.is_date64(orig_pa_type): # TODO: why is this different vs date32? unit = "ms" else: unit = "s" else: # pyarrow sees sequence of datetime/timedelta objects and defaults # to "us" but the non-pointwise op retains unit # timestamp or duration unit = orig_pa_type.unit if type(other) in [datetime, timedelta] and unit in ["s", "ms"]: # pydatetime/pytimedelta objects have microsecond reso, so we # take the higher reso of the original and microsecond. Note # this matches what we would do with DatetimeArray/TimedeltaArray unit = "us" pa_expected = pa_expected.cast(f"duration[{unit}]") elif pa.types.is_decimal(pa_expected.type) and pa.types.is_decimal( orig_pa_type ): # decimal precision can resize in the result type depending on data # just compare the float values alt = getattr(obj, op_name)(other) alt_dtype = tm.get_dtype(alt) assert isinstance(alt_dtype, ArrowDtype) if op_name == "__pow__" and isinstance(other, Decimal): # TODO: would it make more sense to retain Decimal here? alt_dtype = ArrowDtype(pa.float64()) elif ( op_name == "__pow__" and isinstance(other, pd.Series) and other.dtype == original_dtype ): # TODO: would it make more sense to retain Decimal here? alt_dtype = ArrowDtype(pa.float64()) else: assert pa.types.is_decimal(alt_dtype.pyarrow_dtype) return expected.astype(alt_dtype) else: pa_expected = pa_expected.cast(orig_pa_type) pd_expected = type(expected_data._values)(pa_expected) if was_frame: expected = pd.DataFrame( pd_expected, index=expected.index, columns=expected.columns ) else: expected = pd.Series(pd_expected) return expected def _is_temporal_supported(self, opname, pa_dtype): return ( ( opname in ("__add__", "__radd__") or ( opname in ("__truediv__", "__rtruediv__", "__floordiv__", "__rfloordiv__") and not pa_version_under14p0 ) ) and pa.types.is_duration(pa_dtype) or opname in ("__sub__", "__rsub__") and pa.types.is_temporal(pa_dtype) ) def _get_expected_exception( self, op_name: str, obj, other ) -> type[Exception] | None: if op_name in ("__divmod__", "__rdivmod__"): return self.divmod_exc dtype = tm.get_dtype(obj) # error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no # attribute "pyarrow_dtype" pa_dtype = dtype.pyarrow_dtype # type: ignore[union-attr] arrow_temporal_supported = self._is_temporal_supported(op_name, pa_dtype) if op_name in { "__mod__", "__rmod__", }: exc = NotImplementedError elif arrow_temporal_supported: exc = None elif op_name in ["__add__", "__radd__"] and ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) ): exc = None elif not ( pa.types.is_floating(pa_dtype) or pa.types.is_integer(pa_dtype) or pa.types.is_decimal(pa_dtype) ): # TODO: in many of these cases, e.g. non-duration temporal, # these will *never* be allowed. Would it make more sense to # re-raise as TypeError, more consistent with non-pyarrow cases? exc = pa.ArrowNotImplementedError else: exc = None return exc def _get_arith_xfail_marker(self, opname, pa_dtype): mark = None arrow_temporal_supported = self._is_temporal_supported(opname, pa_dtype) if opname == "__rpow__" and ( pa.types.is_floating(pa_dtype) or pa.types.is_integer(pa_dtype) or pa.types.is_decimal(pa_dtype) ): mark = pytest.mark.xfail( reason=( f"GH#29997: 1**pandas.NA == 1 while 1**pyarrow.NA == NULL " f"for {pa_dtype}" ) ) elif arrow_temporal_supported and ( pa.types.is_time(pa_dtype) or ( opname in ("__truediv__", "__rtruediv__", "__floordiv__", "__rfloordiv__") and pa.types.is_duration(pa_dtype) ) ): mark = pytest.mark.xfail( raises=TypeError, reason=( f"{opname} not supported between" f"pd.NA and {pa_dtype} Python scalar" ), ) elif opname == "__rfloordiv__" and ( pa.types.is_integer(pa_dtype) or pa.types.is_decimal(pa_dtype) ): mark = pytest.mark.xfail( raises=pa.ArrowInvalid, reason="divide by 0", ) elif opname == "__rtruediv__" and pa.types.is_decimal(pa_dtype): mark = pytest.mark.xfail( raises=pa.ArrowInvalid, reason="divide by 0", ) return mark def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request): pa_dtype = data.dtype.pyarrow_dtype if all_arithmetic_operators == "__rmod__" and pa.types.is_binary(pa_dtype): pytest.skip("Skip testing Python string formatting") elif all_arithmetic_operators in ("__rmul__", "__mul__") and ( pa.types.is_binary(pa_dtype) or pa.types.is_string(pa_dtype) ): request.applymarker( pytest.mark.xfail( raises=TypeError, reason="Can only string multiply by an integer." ) ) mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) if mark is not None: request.applymarker(mark) super().test_arith_series_with_scalar(data, all_arithmetic_operators) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request): pa_dtype = data.dtype.pyarrow_dtype if all_arithmetic_operators == "__rmod__" and ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) ): pytest.skip("Skip testing Python string formatting") elif all_arithmetic_operators in ("__rmul__", "__mul__") and ( pa.types.is_binary(pa_dtype) or pa.types.is_string(pa_dtype) ): request.applymarker( pytest.mark.xfail( raises=TypeError, reason="Can only string multiply by an integer." ) ) mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) if mark is not None: request.applymarker(mark) super().test_arith_frame_with_scalar(data, all_arithmetic_operators) def test_arith_series_with_array(self, data, all_arithmetic_operators, request): pa_dtype = data.dtype.pyarrow_dtype if all_arithmetic_operators in ( "__sub__", "__rsub__", ) and pa.types.is_unsigned_integer(pa_dtype): request.applymarker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=( f"Implemented pyarrow.compute.subtract_checked " f"which raises on overflow for {pa_dtype}" ), ) ) elif all_arithmetic_operators in ("__rmul__", "__mul__") and ( pa.types.is_binary(pa_dtype) or pa.types.is_string(pa_dtype) ): request.applymarker( pytest.mark.xfail( raises=TypeError, reason="Can only string multiply by an integer." ) ) mark = self._get_arith_xfail_marker(all_arithmetic_operators, pa_dtype) if mark is not None: request.applymarker(mark) op_name = all_arithmetic_operators ser = pd.Series(data) # pd.Series([ser.iloc[0]] * len(ser)) may not return ArrowExtensionArray # since ser.iloc[0] is a python scalar other = pd.Series(pd.array([ser.iloc[0]] * len(ser), dtype=data.dtype)) self.check_opname(ser, op_name, other) def test_add_series_with_extension_array(self, data, request): pa_dtype = data.dtype.pyarrow_dtype if pa_dtype.equals("int8"): request.applymarker( pytest.mark.xfail( raises=pa.ArrowInvalid, reason=f"raises on overflow for {pa_dtype}", ) ) super().test_add_series_with_extension_array(data) def test_invalid_other_comp(self, data, comparison_op): # GH 48833 with pytest.raises( NotImplementedError, match=".* not implemented for " ): comparison_op(data, object()) @pytest.mark.parametrize("masked_dtype", ["boolean", "Int64", "Float64"]) def test_comp_masked_numpy(self, masked_dtype, comparison_op): # GH 52625 data = [1, 0, None] ser_masked = pd.Series(data, dtype=masked_dtype) ser_pa = pd.Series(data, dtype=f"{masked_dtype.lower()}[pyarrow]") result = comparison_op(ser_pa, ser_masked) if comparison_op in [operator.lt, operator.gt, operator.ne]: exp = [False, False, None] else: exp = [True, True, None] expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) class TestLogicalOps: """Various Series and DataFrame logical ops methods.""" def test_kleene_or(self): a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") result = a | b expected = pd.Series( [True, True, True, True, False, None, True, None, None], dtype="boolean[pyarrow]", ) tm.assert_series_equal(result, expected) result = b | a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), ) tm.assert_series_equal( b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") ) @pytest.mark.parametrize( "other, expected", [ (None, [True, None, None]), (pd.NA, [True, None, None]), (True, [True, True, True]), (np.bool_(True), [True, True, True]), (False, [True, False, None]), (np.bool_(False), [True, False, None]), ], ) def test_kleene_or_scalar(self, other, expected): a = pd.Series([True, False, None], dtype="boolean[pyarrow]") result = a | other expected = pd.Series(expected, dtype="boolean[pyarrow]") tm.assert_series_equal(result, expected) result = other | a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True, False, None], dtype="boolean[pyarrow]") ) def test_kleene_and(self): a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") result = a & b expected = pd.Series( [True, False, None, False, False, False, None, False, None], dtype="boolean[pyarrow]", ) tm.assert_series_equal(result, expected) result = b & a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), ) tm.assert_series_equal( b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") ) @pytest.mark.parametrize( "other, expected", [ (None, [None, False, None]), (pd.NA, [None, False, None]), (True, [True, False, None]), (False, [False, False, False]), (np.bool_(True), [True, False, None]), (np.bool_(False), [False, False, False]), ], ) def test_kleene_and_scalar(self, other, expected): a = pd.Series([True, False, None], dtype="boolean[pyarrow]") result = a & other expected = pd.Series(expected, dtype="boolean[pyarrow]") tm.assert_series_equal(result, expected) result = other & a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True, False, None], dtype="boolean[pyarrow]") ) def test_kleene_xor(self): a = pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]") b = pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") result = a ^ b expected = pd.Series( [False, True, None, True, False, None, None, None, None], dtype="boolean[pyarrow]", ) tm.assert_series_equal(result, expected) result = b ^ a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean[pyarrow]"), ) tm.assert_series_equal( b, pd.Series([True, False, None] * 3, dtype="boolean[pyarrow]") ) @pytest.mark.parametrize( "other, expected", [ (None, [None, None, None]), (pd.NA, [None, None, None]), (True, [False, True, None]), (np.bool_(True), [False, True, None]), (np.bool_(False), [True, False, None]), ], ) def test_kleene_xor_scalar(self, other, expected): a = pd.Series([True, False, None], dtype="boolean[pyarrow]") result = a ^ other expected = pd.Series(expected, dtype="boolean[pyarrow]") tm.assert_series_equal(result, expected) result = other ^ a tm.assert_series_equal(result, expected) # ensure we haven't mutated anything inplace tm.assert_series_equal( a, pd.Series([True, False, None], dtype="boolean[pyarrow]") ) @pytest.mark.parametrize( "op, exp", [ ["__and__", True], ["__or__", True], ["__xor__", False], ], ) def test_logical_masked_numpy(self, op, exp): # GH 52625 data = [True, False, None] ser_masked = pd.Series(data, dtype="boolean") ser_pa = pd.Series(data, dtype="boolean[pyarrow]") result = getattr(ser_pa, op)(ser_masked) expected = pd.Series([exp, False, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.ALL_INT_PYARROW_DTYPES) def test_bitwise(pa_type): # GH 54495 dtype = ArrowDtype(pa_type) left = pd.Series([1, None, 3, 4], dtype=dtype) right = pd.Series([None, 3, 5, 4], dtype=dtype) result = left | right expected = pd.Series([None, None, 3 | 5, 4 | 4], dtype=dtype) tm.assert_series_equal(result, expected) result = left & right expected = pd.Series([None, None, 3 & 5, 4 & 4], dtype=dtype) tm.assert_series_equal(result, expected) result = left ^ right expected = pd.Series([None, None, 3 ^ 5, 4 ^ 4], dtype=dtype) tm.assert_series_equal(result, expected) result = ~left expected = ~(left.fillna(0).to_numpy()) expected = pd.Series(expected, dtype=dtype).mask(left.isnull()) tm.assert_series_equal(result, expected) def test_arrowdtype_construct_from_string_type_with_unsupported_parameters(): with pytest.raises(NotImplementedError, match="Passing pyarrow type"): ArrowDtype.construct_from_string("not_a_real_dype[s, tz=UTC][pyarrow]") with pytest.raises(NotImplementedError, match="Passing pyarrow type"): ArrowDtype.construct_from_string("decimal(7, 2)[pyarrow]") def test_arrowdtype_construct_from_string_supports_dt64tz(): # as of GH#50689, timestamptz is supported dtype = ArrowDtype.construct_from_string("timestamp[s, tz=UTC][pyarrow]") expected = ArrowDtype(pa.timestamp("s", "UTC")) assert dtype == expected def test_arrowdtype_construct_from_string_type_only_one_pyarrow(): # GH#51225 invalid = "int64[pyarrow]foobar[pyarrow]" msg = ( r"Passing pyarrow type specific parameters \(\[pyarrow\]\) in the " r"string is not supported\." ) with pytest.raises(NotImplementedError, match=msg): pd.Series(range(3), dtype=invalid) def test_arrow_string_multiplication(): # GH 56537 binary = pd.Series(["abc", "defg"], dtype=ArrowDtype(pa.string())) repeat = pd.Series([2, -2], dtype="int64[pyarrow]") result = binary * repeat expected = pd.Series(["abcabc", ""], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) reflected_result = repeat * binary tm.assert_series_equal(result, reflected_result) def test_arrow_string_multiplication_scalar_repeat(): binary = pd.Series(["abc", "defg"], dtype=ArrowDtype(pa.string())) result = binary * 2 expected = pd.Series(["abcabc", "defgdefg"], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) reflected_result = 2 * binary tm.assert_series_equal(reflected_result, expected) @pytest.mark.parametrize( "interpolation", ["linear", "lower", "higher", "nearest", "midpoint"] ) @pytest.mark.parametrize("quantile", [0.5, [0.5, 0.5]]) def test_quantile(data, interpolation, quantile, request): pa_dtype = data.dtype.pyarrow_dtype data = data.take([0, 0, 0]) ser = pd.Series(data) if ( pa.types.is_string(pa_dtype) or pa.types.is_binary(pa_dtype) or pa.types.is_boolean(pa_dtype) ): # For string, bytes, and bool, we don't *expect* to have quantile work # Note this matches the non-pyarrow behavior msg = r"Function 'quantile' has no kernel matching input types \(.*\)" with pytest.raises(pa.ArrowNotImplementedError, match=msg): ser.quantile(q=quantile, interpolation=interpolation) return if ( pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype) or pa.types.is_decimal(pa_dtype) ): pass elif pa.types.is_temporal(data._pa_array.type): pass else: request.applymarker( pytest.mark.xfail( raises=pa.ArrowNotImplementedError, reason=f"quantile not supported by pyarrow for {pa_dtype}", ) ) data = data.take([0, 0, 0]) ser = pd.Series(data) result = ser.quantile(q=quantile, interpolation=interpolation) if pa.types.is_timestamp(pa_dtype) and interpolation not in ["lower", "higher"]: # rounding error will make the check below fail # (e.g. '2020-01-01 01:01:01.000001' vs '2020-01-01 01:01:01.000001024'), # so we'll check for now that we match the numpy analogue if pa_dtype.tz: pd_dtype = f"M8[{pa_dtype.unit}, {pa_dtype.tz}]" else: pd_dtype = f"M8[{pa_dtype.unit}]" ser_np = ser.astype(pd_dtype) expected = ser_np.quantile(q=quantile, interpolation=interpolation) if quantile == 0.5: if pa_dtype.unit == "us": expected = expected.to_pydatetime(warn=False) assert result == expected else: if pa_dtype.unit == "us": expected = expected.dt.floor("us") tm.assert_series_equal(result, expected.astype(data.dtype)) return if quantile == 0.5: assert result == data[0] else: # Just check the values expected = pd.Series(data.take([0, 0]), index=[0.5, 0.5]) if ( pa.types.is_integer(pa_dtype) or pa.types.is_floating(pa_dtype) or pa.types.is_decimal(pa_dtype) ): expected = expected.astype("float64[pyarrow]") result = result.astype("float64[pyarrow]") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "take_idx, exp_idx", [[[0, 0, 2, 2, 4, 4], [4, 0]], [[0, 0, 0, 2, 4, 4], [0]]], ids=["multi_mode", "single_mode"], ) def test_mode_dropna_true(data_for_grouping, take_idx, exp_idx): data = data_for_grouping.take(take_idx) ser = pd.Series(data) result = ser.mode(dropna=True) expected = pd.Series(data_for_grouping.take(exp_idx)) tm.assert_series_equal(result, expected) def test_mode_dropna_false_mode_na(data): # GH 50982 more_nans = pd.Series([None, None, data[0]], dtype=data.dtype) result = more_nans.mode(dropna=False) expected = pd.Series([None], dtype=data.dtype) tm.assert_series_equal(result, expected) expected = pd.Series([data[0], None], dtype=data.dtype) result = expected.mode(dropna=False) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "arrow_dtype, expected_type", [ [pa.binary(), bytes], [pa.binary(16), bytes], [pa.large_binary(), bytes], [pa.large_string(), str], [pa.list_(pa.int64()), list], [pa.large_list(pa.int64()), list], [pa.map_(pa.string(), pa.int64()), list], [pa.struct([("f1", pa.int8()), ("f2", pa.string())]), dict], [pa.dictionary(pa.int64(), pa.int64()), CategoricalDtypeType], ], ) def test_arrow_dtype_type(arrow_dtype, expected_type): # GH 51845 # TODO: Redundant with test_getitem_scalar once arrow_dtype exists in data fixture assert ArrowDtype(arrow_dtype).type == expected_type def test_is_bool_dtype(): # GH 22667 data = ArrowExtensionArray(pa.array([True, False, True])) assert is_bool_dtype(data) assert pd.core.common.is_bool_indexer(data) s = pd.Series(range(len(data))) result = s[data] expected = s[np.asarray(data)] tm.assert_series_equal(result, expected) def test_is_numeric_dtype(data): # GH 50563 pa_type = data.dtype.pyarrow_dtype if ( pa.types.is_floating(pa_type) or pa.types.is_integer(pa_type) or pa.types.is_decimal(pa_type) ): assert is_numeric_dtype(data) else: assert not is_numeric_dtype(data) def test_is_integer_dtype(data): # GH 50667 pa_type = data.dtype.pyarrow_dtype if pa.types.is_integer(pa_type): assert is_integer_dtype(data) else: assert not is_integer_dtype(data) def test_is_signed_integer_dtype(data): pa_type = data.dtype.pyarrow_dtype if pa.types.is_signed_integer(pa_type): assert is_signed_integer_dtype(data) else: assert not is_signed_integer_dtype(data) def test_is_unsigned_integer_dtype(data): pa_type = data.dtype.pyarrow_dtype if pa.types.is_unsigned_integer(pa_type): assert is_unsigned_integer_dtype(data) else: assert not is_unsigned_integer_dtype(data) def test_is_float_dtype(data): pa_type = data.dtype.pyarrow_dtype if pa.types.is_floating(pa_type): assert is_float_dtype(data) else: assert not is_float_dtype(data) def test_pickle_roundtrip(data): # GH 42600 expected = pd.Series(data) expected_sliced = expected.head(2) full_pickled = pickle.dumps(expected) sliced_pickled = pickle.dumps(expected_sliced) assert len(full_pickled) > len(sliced_pickled) result = pickle.loads(full_pickled) tm.assert_series_equal(result, expected) result_sliced = pickle.loads(sliced_pickled) tm.assert_series_equal(result_sliced, expected_sliced) def test_astype_from_non_pyarrow(data): # GH49795 pd_array = data._pa_array.to_pandas().array result = pd_array.astype(data.dtype) assert not isinstance(pd_array.dtype, ArrowDtype) assert isinstance(result.dtype, ArrowDtype) tm.assert_extension_array_equal(result, data) def test_astype_float_from_non_pyarrow_str(): # GH50430 ser = pd.Series(["1.0"]) result = ser.astype("float64[pyarrow]") expected = pd.Series([1.0], dtype="float64[pyarrow]") tm.assert_series_equal(result, expected) def test_astype_errors_ignore(): # GH 55399 expected = pd.DataFrame({"col": [17000000]}, dtype="int32[pyarrow]") result = expected.astype("float[pyarrow]", errors="ignore") tm.assert_frame_equal(result, expected) def test_to_numpy_with_defaults(data): # GH49973 result = data.to_numpy() pa_type = data._pa_array.type if pa.types.is_duration(pa_type) or pa.types.is_timestamp(pa_type): pytest.skip("Tested in test_to_numpy_temporal") elif pa.types.is_date(pa_type): expected = np.array(list(data)) else: expected = np.array(data._pa_array) if data._hasna and not is_numeric_dtype(data.dtype): expected = expected.astype(object) expected[pd.isna(data)] = pd.NA tm.assert_numpy_array_equal(result, expected) def test_to_numpy_int_with_na(): # GH51227: ensure to_numpy does not convert int to float data = [1, None] arr = pd.array(data, dtype="int64[pyarrow]") result = arr.to_numpy() expected = np.array([1, np.nan]) assert isinstance(result[0], float) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("na_val, exp", [(lib.no_default, np.nan), (1, 1)]) def test_to_numpy_null_array(na_val, exp): # GH#52443 arr = pd.array([pd.NA, pd.NA], dtype="null[pyarrow]") result = arr.to_numpy(dtype="float64", na_value=na_val) expected = np.array([exp] * 2, dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_to_numpy_null_array_no_dtype(): # GH#52443 arr = pd.array([pd.NA, pd.NA], dtype="null[pyarrow]") result = arr.to_numpy(dtype=None) expected = np.array([pd.NA] * 2, dtype="object") tm.assert_numpy_array_equal(result, expected) def test_to_numpy_without_dtype(): # GH 54808 arr = pd.array([True, pd.NA], dtype="boolean[pyarrow]") result = arr.to_numpy(na_value=False) expected = np.array([True, False], dtype=np.bool_) tm.assert_numpy_array_equal(result, expected) arr = pd.array([1.0, pd.NA], dtype="float32[pyarrow]") result = arr.to_numpy(na_value=0.0) expected = np.array([1.0, 0.0], dtype=np.float32) tm.assert_numpy_array_equal(result, expected) def test_setitem_null_slice(data): # GH50248 orig = data.copy() result = orig.copy() result[:] = data[0] expected = ArrowExtensionArray._from_sequence( [data[0]] * len(data), dtype=data.dtype, ) tm.assert_extension_array_equal(result, expected) result = orig.copy() result[:] = data[::-1] expected = data[::-1] tm.assert_extension_array_equal(result, expected) result = orig.copy() result[:] = data.tolist() expected = data tm.assert_extension_array_equal(result, expected) def test_setitem_invalid_dtype(data): # GH50248 pa_type = data._pa_array.type if pa.types.is_string(pa_type) or pa.types.is_binary(pa_type): fill_value = 123 err = TypeError msg = "Invalid value '123' for dtype" elif ( pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type) or pa.types.is_boolean(pa_type) ): fill_value = "foo" err = pa.ArrowInvalid msg = "Could not convert" else: fill_value = "foo" err = TypeError msg = "Invalid value 'foo' for dtype" with pytest.raises(err, match=msg): data[:] = fill_value def test_from_arrow_respecting_given_dtype(): date_array = pa.array( [pd.Timestamp("2019-12-31"), pd.Timestamp("2019-12-31")], type=pa.date32() ) result = date_array.to_pandas( types_mapper={pa.date32(): ArrowDtype(pa.date64())}.get ) expected = pd.Series( [pd.Timestamp("2019-12-31"), pd.Timestamp("2019-12-31")], dtype=ArrowDtype(pa.date64()), ) tm.assert_series_equal(result, expected) def test_from_arrow_respecting_given_dtype_unsafe(): array = pa.array([1.5, 2.5], type=pa.float64()) with pytest.raises(pa.ArrowInvalid, match="Float value 1.5 was truncated"): array.to_pandas(types_mapper={pa.float64(): ArrowDtype(pa.int64())}.get) def test_round(): dtype = "float64[pyarrow]" ser = pd.Series([0.0, 1.23, 2.56, pd.NA], dtype=dtype) result = ser.round(1) expected = pd.Series([0.0, 1.2, 2.6, pd.NA], dtype=dtype) tm.assert_series_equal(result, expected) ser = pd.Series([123.4, pd.NA, 56.78], dtype=dtype) result = ser.round(-1) expected = pd.Series([120.0, pd.NA, 60.0], dtype=dtype) tm.assert_series_equal(result, expected) def test_searchsorted_with_na_raises(data_for_sorting, as_series): # GH50447 b, c, a = data_for_sorting arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c] arr[-1] = pd.NA if as_series: arr = pd.Series(arr) msg = ( "searchsorted requires array to be sorted, " "which is impossible with NAs present." ) with pytest.raises(ValueError, match=msg): arr.searchsorted(b) def test_sort_values_dictionary(): df = pd.DataFrame( { "a": pd.Series( ["x", "y"], dtype=ArrowDtype(pa.dictionary(pa.int32(), pa.string())) ), "b": [1, 2], }, ) expected = df.copy() result = df.sort_values(by=["a", "b"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("pat", ["abc", "a[a-z]{2}"]) def test_str_count(pat): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.count(pat) expected = pd.Series([1, None], dtype=ArrowDtype(pa.int32())) tm.assert_series_equal(result, expected) def test_str_count_flags_unsupported(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises(NotImplementedError, match="count not"): ser.str.count("abc", flags=1) @pytest.mark.parametrize( "side, str_func", [["left", "rjust"], ["right", "ljust"], ["both", "center"]] ) def test_str_pad(side, str_func): ser = pd.Series(["a", None], dtype=ArrowDtype(pa.string())) result = ser.str.pad(width=3, side=side, fillchar="x") expected = pd.Series( [getattr("a", str_func)(3, "x"), None], dtype=ArrowDtype(pa.string()) ) tm.assert_series_equal(result, expected) def test_str_pad_invalid_side(): ser = pd.Series(["a", None], dtype=ArrowDtype(pa.string())) with pytest.raises(ValueError, match="Invalid side: foo"): ser.str.pad(3, "foo", "x") @pytest.mark.parametrize( "pat, case, na, regex, exp", [ ["ab", False, None, False, [True, None]], ["Ab", True, None, False, [False, None]], ["ab", False, True, False, [True, True]], ["a[a-z]{1}", False, None, True, [True, None]], ["A[a-z]{1}", True, None, True, [False, None]], ], ) def test_str_contains(pat, case, na, regex, exp): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.contains(pat, case=case, na=na, regex=regex) expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) def test_str_contains_flags_unsupported(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises(NotImplementedError, match="contains not"): ser.str.contains("a", flags=1) @pytest.mark.parametrize( "side, pat, na, exp", [ ["startswith", "ab", None, [True, None, False]], ["startswith", "b", False, [False, False, False]], ["endswith", "b", True, [False, True, False]], ["endswith", "bc", None, [True, None, False]], ["startswith", ("a", "e", "g"), None, [True, None, True]], ["endswith", ("a", "c", "g"), None, [True, None, True]], ["startswith", (), None, [False, None, False]], ["endswith", (), None, [False, None, False]], ], ) def test_str_start_ends_with(side, pat, na, exp): ser = pd.Series(["abc", None, "efg"], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, side)(pat, na=na) expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("side", ("startswith", "endswith")) def test_str_starts_ends_with_all_nulls_empty_tuple(side): ser = pd.Series([None, None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, side)(()) # bool datatype preserved for all nulls. expected = pd.Series([None, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "arg_name, arg", [["pat", re.compile("b")], ["repl", str], ["case", False], ["flags", 1]], ) def test_str_replace_unsupported(arg_name, arg): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) kwargs = {"pat": "b", "repl": "x", "regex": True} kwargs[arg_name] = arg with pytest.raises(NotImplementedError, match="replace is not supported"): ser.str.replace(**kwargs) @pytest.mark.parametrize( "pat, repl, n, regex, exp", [ ["a", "x", -1, False, ["xbxc", None]], ["a", "x", 1, False, ["xbac", None]], ["[a-b]", "x", -1, True, ["xxxc", None]], ], ) def test_str_replace(pat, repl, n, regex, exp): ser = pd.Series(["abac", None], dtype=ArrowDtype(pa.string())) result = ser.str.replace(pat, repl, n=n, regex=regex) expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_str_replace_negative_n(): # GH 56404 ser = pd.Series(["abc", "aaaaaa"], dtype=ArrowDtype(pa.string())) actual = ser.str.replace("a", "", -3, True) expected = pd.Series(["bc", ""], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(expected, actual) def test_str_repeat_unsupported(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises(NotImplementedError, match="repeat is not"): ser.str.repeat([1, 2]) def test_str_repeat(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.repeat(2) expected = pd.Series(["abcabc", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "pat, case, na, exp", [ ["ab", False, None, [True, None]], ["Ab", True, None, [False, None]], ["bc", True, None, [False, None]], ["ab", False, True, [True, True]], ["a[a-z]{1}", False, None, [True, None]], ["A[a-z]{1}", True, None, [False, None]], ], ) def test_str_match(pat, case, na, exp): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.match(pat, case=case, na=na) expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "pat, case, na, exp", [ ["abc", False, None, [True, True, False, None]], ["Abc", True, None, [False, False, False, None]], ["bc", True, None, [False, False, False, None]], ["ab", False, None, [True, True, False, None]], ["a[a-z]{2}", False, None, [True, True, False, None]], ["A[a-z]{1}", True, None, [False, False, False, None]], # GH Issue: #56652 ["abc$", False, None, [True, False, False, None]], ["abc\\$", False, None, [False, True, False, None]], ["Abc$", True, None, [False, False, False, None]], ["Abc\\$", True, None, [False, False, False, None]], ], ) def test_str_fullmatch(pat, case, na, exp): ser = pd.Series(["abc", "abc$", "$abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.match(pat, case=case, na=na) expected = pd.Series(exp, dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "sub, start, end, exp, exp_typ", [["ab", 0, None, [0, None], pa.int32()], ["bc", 1, 3, [1, None], pa.int64()]], ) def test_str_find(sub, start, end, exp, exp_typ): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.find(sub, start=start, end=end) expected = pd.Series(exp, dtype=ArrowDtype(exp_typ)) tm.assert_series_equal(result, expected) def test_str_find_negative_start(): # GH 56411 ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.find(sub="b", start=-1000, end=3) expected = pd.Series([1, None], dtype=ArrowDtype(pa.int64())) tm.assert_series_equal(result, expected) def test_str_find_notimplemented(): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) with pytest.raises(NotImplementedError, match="find not implemented"): ser.str.find("ab", start=1) @pytest.mark.parametrize( "i, exp", [ [1, ["b", "e", None]], [-1, ["c", "e", None]], [2, ["c", None, None]], [-3, ["a", None, None]], [4, [None, None, None]], ], ) def test_str_get(i, exp): ser = pd.Series(["abc", "de", None], dtype=ArrowDtype(pa.string())) result = ser.str.get(i) expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.xfail( reason="TODO: StringMethods._validate should support Arrow list types", raises=AttributeError, ) def test_str_join(): ser = pd.Series(ArrowExtensionArray(pa.array([list("abc"), list("123"), None]))) result = ser.str.join("=") expected = pd.Series(["a=b=c", "1=2=3", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_str_join_string_type(): ser = pd.Series(ArrowExtensionArray(pa.array(["abc", "123", None]))) result = ser.str.join("=") expected = pd.Series(["a=b=c", "1=2=3", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "start, stop, step, exp", [ [None, 2, None, ["ab", None]], [None, 2, 1, ["ab", None]], [1, 3, 1, ["bc", None]], ], ) def test_str_slice(start, stop, step, exp): ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) result = ser.str.slice(start, stop, step) expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "start, stop, repl, exp", [ [1, 2, "x", ["axcd", None]], [None, 2, "x", ["xcd", None]], [None, 2, None, ["cd", None]], ], ) def test_str_slice_replace(start, stop, repl, exp): ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) result = ser.str.slice_replace(start, stop, repl) expected = pd.Series(exp, dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "value, method, exp", [ ["a1c", "isalnum", True], ["!|,", "isalnum", False], ["aaa", "isalpha", True], ["!!!", "isalpha", False], ["٠", "isdecimal", True], # noqa: RUF001 ["~!", "isdecimal", False], ["2", "isdigit", True], ["~", "isdigit", False], ["aaa", "islower", True], ["aaA", "islower", False], ["123", "isnumeric", True], ["11I", "isnumeric", False], [" ", "isspace", True], ["", "isspace", False], ["The That", "istitle", True], ["the That", "istitle", False], ["AAA", "isupper", True], ["AAc", "isupper", False], ], ) def test_str_is_functions(value, method, exp): ser = pd.Series([value, None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)() expected = pd.Series([exp, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "method, exp", [ ["capitalize", "Abc def"], ["title", "Abc Def"], ["swapcase", "AbC Def"], ["lower", "abc def"], ["upper", "ABC DEF"], ["casefold", "abc def"], ], ) def test_str_transform_functions(method, exp): ser = pd.Series(["aBc dEF", None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)() expected = pd.Series([exp, None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_str_len(): ser = pd.Series(["abcd", None], dtype=ArrowDtype(pa.string())) result = ser.str.len() expected = pd.Series([4, None], dtype=ArrowDtype(pa.int32())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "method, to_strip, val", [ ["strip", None, " abc "], ["strip", "x", "xabcx"], ["lstrip", None, " abc"], ["lstrip", "x", "xabc"], ["rstrip", None, "abc "], ["rstrip", "x", "abcx"], ], ) def test_str_strip(method, to_strip, val): ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)(to_strip=to_strip) expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("val", ["abc123", "abc"]) def test_str_removesuffix(val): ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) result = ser.str.removesuffix("123") expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("val", ["123abc", "abc"]) def test_str_removeprefix(val): ser = pd.Series([val, None], dtype=ArrowDtype(pa.string())) result = ser.str.removeprefix("123") expected = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("errors", ["ignore", "strict"]) @pytest.mark.parametrize( "encoding, exp", [ ["utf8", b"abc"], ["utf32", b"\xff\xfe\x00\x00a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00"], ], ) def test_str_encode(errors, encoding, exp): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.encode(encoding, errors) expected = pd.Series([exp, None], dtype=ArrowDtype(pa.binary())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("flags", [0, 2]) def test_str_findall(flags): ser = pd.Series(["abc", "efg", None], dtype=ArrowDtype(pa.string())) result = ser.str.findall("b", flags=flags) expected = pd.Series([["b"], [], None], dtype=ArrowDtype(pa.list_(pa.string()))) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["index", "rindex"]) @pytest.mark.parametrize( "start, end", [ [0, None], [1, 4], ], ) def test_str_r_index(method, start, end): ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)("c", start, end) expected = pd.Series([2, None], dtype=ArrowDtype(pa.int64())) tm.assert_series_equal(result, expected) with pytest.raises(ValueError, match="substring not found"): getattr(ser.str, method)("foo", start, end) @pytest.mark.parametrize("form", ["NFC", "NFKC"]) def test_str_normalize(form): ser = pd.Series(["abc", None], dtype=ArrowDtype(pa.string())) result = ser.str.normalize(form) expected = ser.copy() tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "start, end", [ [0, None], [1, 4], ], ) def test_str_rfind(start, end): ser = pd.Series(["abcba", "foo", None], dtype=ArrowDtype(pa.string())) result = ser.str.rfind("c", start, end) expected = pd.Series([2, -1, None], dtype=ArrowDtype(pa.int64())) tm.assert_series_equal(result, expected) def test_str_translate(): ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) result = ser.str.translate({97: "b"}) expected = pd.Series(["bbcbb", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_str_wrap(): ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) result = ser.str.wrap(3) expected = pd.Series(["abc\nba", None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_get_dummies(): ser = pd.Series(["a|b", None, "a|c"], dtype=ArrowDtype(pa.string())) result = ser.str.get_dummies() expected = pd.DataFrame( [[True, True, False], [False, False, False], [True, False, True]], dtype=ArrowDtype(pa.bool_()), columns=["a", "b", "c"], ) tm.assert_frame_equal(result, expected) def test_str_partition(): ser = pd.Series(["abcba", None], dtype=ArrowDtype(pa.string())) result = ser.str.partition("b") expected = pd.DataFrame( [["a", "b", "cba"], [None, None, None]], dtype=ArrowDtype(pa.string()) ) tm.assert_frame_equal(result, expected) result = ser.str.partition("b", expand=False) expected = pd.Series(ArrowExtensionArray(pa.array([["a", "b", "cba"], None]))) tm.assert_series_equal(result, expected) result = ser.str.rpartition("b") expected = pd.DataFrame( [["abc", "b", "a"], [None, None, None]], dtype=ArrowDtype(pa.string()) ) tm.assert_frame_equal(result, expected) result = ser.str.rpartition("b", expand=False) expected = pd.Series(ArrowExtensionArray(pa.array([["abc", "b", "a"], None]))) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["rsplit", "split"]) def test_str_split_pat_none(method): # GH 56271 ser = pd.Series(["a1 cbc\nb", None], dtype=ArrowDtype(pa.string())) result = getattr(ser.str, method)() expected = pd.Series(ArrowExtensionArray(pa.array([["a1", "cbc", "b"], None]))) tm.assert_series_equal(result, expected) def test_str_split(): # GH 52401 ser = pd.Series(["a1cbcb", "a2cbcb", None], dtype=ArrowDtype(pa.string())) result = ser.str.split("c") expected = pd.Series( ArrowExtensionArray(pa.array([["a1", "b", "b"], ["a2", "b", "b"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.split("c", n=1) expected = pd.Series( ArrowExtensionArray(pa.array([["a1", "bcb"], ["a2", "bcb"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.split("[1-2]", regex=True) expected = pd.Series( ArrowExtensionArray(pa.array([["a", "cbcb"], ["a", "cbcb"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.split("[1-2]", regex=True, expand=True) expected = pd.DataFrame( { 0: ArrowExtensionArray(pa.array(["a", "a", None])), 1: ArrowExtensionArray(pa.array(["cbcb", "cbcb", None])), } ) tm.assert_frame_equal(result, expected) result = ser.str.split("1", expand=True) expected = pd.DataFrame( { 0: ArrowExtensionArray(pa.array(["a", "a2cbcb", None])), 1: ArrowExtensionArray(pa.array(["cbcb", None, None])), } ) tm.assert_frame_equal(result, expected) def test_str_rsplit(): # GH 52401 ser = pd.Series(["a1cbcb", "a2cbcb", None], dtype=ArrowDtype(pa.string())) result = ser.str.rsplit("c") expected = pd.Series( ArrowExtensionArray(pa.array([["a1", "b", "b"], ["a2", "b", "b"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.rsplit("c", n=1) expected = pd.Series( ArrowExtensionArray(pa.array([["a1cb", "b"], ["a2cb", "b"], None])) ) tm.assert_series_equal(result, expected) result = ser.str.rsplit("c", n=1, expand=True) expected = pd.DataFrame( { 0: ArrowExtensionArray(pa.array(["a1cb", "a2cb", None])), 1: ArrowExtensionArray(pa.array(["b", "b", None])), } ) tm.assert_frame_equal(result, expected) result = ser.str.rsplit("1", expand=True) expected = pd.DataFrame( { 0: ArrowExtensionArray(pa.array(["a", "a2cbcb", None])), 1: ArrowExtensionArray(pa.array(["cbcb", None, None])), } ) tm.assert_frame_equal(result, expected) def test_str_extract_non_symbolic(): ser = pd.Series(["a1", "b2", "c3"], dtype=ArrowDtype(pa.string())) with pytest.raises(ValueError, match="pat=.* must contain a symbolic group name."): ser.str.extract(r"[ab](\d)") @pytest.mark.parametrize("expand", [True, False]) def test_str_extract(expand): ser = pd.Series(["a1", "b2", "c3"], dtype=ArrowDtype(pa.string())) result = ser.str.extract(r"(?P[ab])(?P\d)", expand=expand) expected = pd.DataFrame( { "letter": ArrowExtensionArray(pa.array(["a", "b", None])), "digit": ArrowExtensionArray(pa.array(["1", "2", None])), } ) tm.assert_frame_equal(result, expected) def test_str_extract_expand(): ser = pd.Series(["a1", "b2", "c3"], dtype=ArrowDtype(pa.string())) result = ser.str.extract(r"[ab](?P\d)", expand=True) expected = pd.DataFrame( { "digit": ArrowExtensionArray(pa.array(["1", "2", None])), } ) tm.assert_frame_equal(result, expected) result = ser.str.extract(r"[ab](?P\d)", expand=False) expected = pd.Series(ArrowExtensionArray(pa.array(["1", "2", None])), name="digit") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("unit", ["ns", "us", "ms", "s"]) def test_duration_from_strings_with_nat(unit): # GH51175 strings = ["1000", "NaT"] pa_type = pa.duration(unit) result = ArrowExtensionArray._from_sequence_of_strings(strings, dtype=pa_type) expected = ArrowExtensionArray(pa.array([1000, None], type=pa_type)) tm.assert_extension_array_equal(result, expected) def test_unsupported_dt(data): pa_dtype = data.dtype.pyarrow_dtype if not pa.types.is_temporal(pa_dtype): with pytest.raises( AttributeError, match="Can only use .dt accessor with datetimelike values" ): pd.Series(data).dt @pytest.mark.parametrize( "prop, expected", [ ["year", 2023], ["day", 2], ["day_of_week", 0], ["dayofweek", 0], ["weekday", 0], ["day_of_year", 2], ["dayofyear", 2], ["hour", 3], ["minute", 4], ["is_leap_year", False], ["microsecond", 5], ["month", 1], ["nanosecond", 6], ["quarter", 1], ["second", 7], ["date", date(2023, 1, 2)], ["time", time(3, 4, 7, 5)], ], ) def test_dt_properties(prop, expected): ser = pd.Series( [ pd.Timestamp( year=2023, month=1, day=2, hour=3, minute=4, second=7, microsecond=5, nanosecond=6, ), None, ], dtype=ArrowDtype(pa.timestamp("ns")), ) result = getattr(ser.dt, prop) exp_type = None if isinstance(expected, date): exp_type = pa.date32() elif isinstance(expected, time): exp_type = pa.time64("ns") expected = pd.Series(ArrowExtensionArray(pa.array([expected, None], type=exp_type))) tm.assert_series_equal(result, expected) def test_dt_is_month_start_end(): ser = pd.Series( [ datetime(year=2023, month=12, day=2, hour=3), datetime(year=2023, month=1, day=1, hour=3), datetime(year=2023, month=3, day=31, hour=3), None, ], dtype=ArrowDtype(pa.timestamp("us")), ) result = ser.dt.is_month_start expected = pd.Series([False, True, False, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) result = ser.dt.is_month_end expected = pd.Series([False, False, True, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) def test_dt_is_year_start_end(): ser = pd.Series( [ datetime(year=2023, month=12, day=31, hour=3), datetime(year=2023, month=1, day=1, hour=3), datetime(year=2023, month=3, day=31, hour=3), None, ], dtype=ArrowDtype(pa.timestamp("us")), ) result = ser.dt.is_year_start expected = pd.Series([False, True, False, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) result = ser.dt.is_year_end expected = pd.Series([True, False, False, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) def test_dt_is_quarter_start_end(): ser = pd.Series( [ datetime(year=2023, month=11, day=30, hour=3), datetime(year=2023, month=1, day=1, hour=3), datetime(year=2023, month=3, day=31, hour=3), None, ], dtype=ArrowDtype(pa.timestamp("us")), ) result = ser.dt.is_quarter_start expected = pd.Series([False, True, False, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) result = ser.dt.is_quarter_end expected = pd.Series([False, False, True, None], dtype=ArrowDtype(pa.bool_())) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["days_in_month", "daysinmonth"]) def test_dt_days_in_month(method): ser = pd.Series( [ datetime(year=2023, month=3, day=30, hour=3), datetime(year=2023, month=4, day=1, hour=3), datetime(year=2023, month=2, day=3, hour=3), None, ], dtype=ArrowDtype(pa.timestamp("us")), ) result = getattr(ser.dt, method) expected = pd.Series([31, 30, 28, None], dtype=ArrowDtype(pa.int64())) tm.assert_series_equal(result, expected) def test_dt_normalize(): ser = pd.Series( [ datetime(year=2023, month=3, day=30), datetime(year=2023, month=4, day=1, hour=3), datetime(year=2023, month=2, day=3, hour=23, minute=59, second=59), None, ], dtype=ArrowDtype(pa.timestamp("us")), ) result = ser.dt.normalize() expected = pd.Series( [ datetime(year=2023, month=3, day=30), datetime(year=2023, month=4, day=1), datetime(year=2023, month=2, day=3), None, ], dtype=ArrowDtype(pa.timestamp("us")), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("unit", ["us", "ns"]) def test_dt_time_preserve_unit(unit): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp(unit)), ) assert ser.dt.unit == unit result = ser.dt.time expected = pd.Series( ArrowExtensionArray(pa.array([time(3, 0), None], type=pa.time64(unit))) ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"]) def test_dt_tz(tz): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns", tz=tz)), ) result = ser.dt.tz assert result == timezones.maybe_get_tz(tz) def test_dt_isocalendar(): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) result = ser.dt.isocalendar() expected = pd.DataFrame( [[2023, 1, 1], [0, 0, 0]], columns=["year", "week", "day"], dtype="int64[pyarrow]", ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "method, exp", [["day_name", "Sunday"], ["month_name", "January"]] ) def test_dt_day_month_name(method, exp, request): # GH 52388 _require_timezone_database(request) ser = pd.Series([datetime(2023, 1, 1), None], dtype=ArrowDtype(pa.timestamp("ms"))) result = getattr(ser.dt, method)() expected = pd.Series([exp, None], dtype=ArrowDtype(pa.string())) tm.assert_series_equal(result, expected) def test_dt_strftime(request): _require_timezone_database(request) ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) result = ser.dt.strftime("%Y-%m-%dT%H:%M:%S") expected = pd.Series( ["2023-01-02T03:00:00.000000000", None], dtype=ArrowDtype(pa.string()) ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["ceil", "floor", "round"]) def test_dt_roundlike_tz_options_not_supported(method): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) with pytest.raises(NotImplementedError, match="ambiguous is not supported."): getattr(ser.dt, method)("1h", ambiguous="NaT") with pytest.raises(NotImplementedError, match="nonexistent is not supported."): getattr(ser.dt, method)("1h", nonexistent="NaT") @pytest.mark.parametrize("method", ["ceil", "floor", "round"]) def test_dt_roundlike_unsupported_freq(method): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) with pytest.raises(ValueError, match="freq='1B' is not supported"): getattr(ser.dt, method)("1B") with pytest.raises(ValueError, match="Must specify a valid frequency: None"): getattr(ser.dt, method)(None) @pytest.mark.parametrize("freq", ["D", "h", "min", "s", "ms", "us", "ns"]) @pytest.mark.parametrize("method", ["ceil", "floor", "round"]) def test_dt_ceil_year_floor(freq, method): ser = pd.Series( [datetime(year=2023, month=1, day=1), None], ) pa_dtype = ArrowDtype(pa.timestamp("ns")) expected = getattr(ser.dt, method)(f"1{freq}").astype(pa_dtype) result = getattr(ser.astype(pa_dtype).dt, method)(f"1{freq}") tm.assert_series_equal(result, expected) def test_dt_to_pydatetime(): # GH 51859 data = [datetime(2022, 1, 1), datetime(2023, 1, 1)] ser = pd.Series(data, dtype=ArrowDtype(pa.timestamp("ns"))) msg = "The behavior of ArrowTemporalProperties.to_pydatetime is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.dt.to_pydatetime() expected = np.array(data, dtype=object) tm.assert_numpy_array_equal(result, expected) assert all(type(res) is datetime for res in result) msg = "The behavior of DatetimeProperties.to_pydatetime is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): expected = ser.astype("datetime64[ns]").dt.to_pydatetime() tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("date_type", [32, 64]) def test_dt_to_pydatetime_date_error(date_type): # GH 52812 ser = pd.Series( [date(2022, 12, 31)], dtype=ArrowDtype(getattr(pa, f"date{date_type}")()), ) msg = "The behavior of ArrowTemporalProperties.to_pydatetime is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): with pytest.raises(ValueError, match="to_pydatetime cannot be called with"): ser.dt.to_pydatetime() def test_dt_tz_localize_unsupported_tz_options(): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) with pytest.raises(NotImplementedError, match="ambiguous='NaT' is not supported"): ser.dt.tz_localize("UTC", ambiguous="NaT") with pytest.raises(NotImplementedError, match="nonexistent='NaT' is not supported"): ser.dt.tz_localize("UTC", nonexistent="NaT") def test_dt_tz_localize_none(): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns", tz="US/Pacific")), ) result = ser.dt.tz_localize(None) expected = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("unit", ["us", "ns"]) def test_dt_tz_localize(unit, request): _require_timezone_database(request) ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp(unit)), ) result = ser.dt.tz_localize("US/Pacific") exp_data = pa.array( [datetime(year=2023, month=1, day=2, hour=3), None], type=pa.timestamp(unit) ) exp_data = pa.compute.assume_timezone(exp_data, "US/Pacific") expected = pd.Series(ArrowExtensionArray(exp_data)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "nonexistent, exp_date", [ ["shift_forward", datetime(year=2023, month=3, day=12, hour=3)], ["shift_backward", pd.Timestamp("2023-03-12 01:59:59.999999999")], ], ) def test_dt_tz_localize_nonexistent(nonexistent, exp_date, request): _require_timezone_database(request) ser = pd.Series( [datetime(year=2023, month=3, day=12, hour=2, minute=30), None], dtype=ArrowDtype(pa.timestamp("ns")), ) result = ser.dt.tz_localize("US/Pacific", nonexistent=nonexistent) exp_data = pa.array([exp_date, None], type=pa.timestamp("ns")) exp_data = pa.compute.assume_timezone(exp_data, "US/Pacific") expected = pd.Series(ArrowExtensionArray(exp_data)) tm.assert_series_equal(result, expected) def test_dt_tz_convert_not_tz_raises(): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) with pytest.raises(TypeError, match="Cannot convert tz-naive timestamps"): ser.dt.tz_convert("UTC") def test_dt_tz_convert_none(): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns", "US/Pacific")), ) result = ser.dt.tz_convert(None) expected = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp("ns")), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("unit", ["us", "ns"]) def test_dt_tz_convert(unit): ser = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp(unit, "US/Pacific")), ) result = ser.dt.tz_convert("US/Eastern") expected = pd.Series( [datetime(year=2023, month=1, day=2, hour=3), None], dtype=ArrowDtype(pa.timestamp(unit, "US/Eastern")), ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["timestamp[ms][pyarrow]", "duration[ms][pyarrow]"]) def test_as_unit(dtype): # GH 52284 ser = pd.Series([1000, None], dtype=dtype) result = ser.dt.as_unit("ns") expected = ser.astype(dtype.replace("ms", "ns")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "prop, expected", [ ["days", 1], ["seconds", 2], ["microseconds", 3], ["nanoseconds", 4], ], ) def test_dt_timedelta_properties(prop, expected): # GH 52284 ser = pd.Series( [ pd.Timedelta( days=1, seconds=2, microseconds=3, nanoseconds=4, ), None, ], dtype=ArrowDtype(pa.duration("ns")), ) result = getattr(ser.dt, prop) expected = pd.Series( ArrowExtensionArray(pa.array([expected, None], type=pa.int32())) ) tm.assert_series_equal(result, expected) def test_dt_timedelta_total_seconds(): # GH 52284 ser = pd.Series( [ pd.Timedelta( days=1, seconds=2, microseconds=3, nanoseconds=4, ), None, ], dtype=ArrowDtype(pa.duration("ns")), ) result = ser.dt.total_seconds() expected = pd.Series( ArrowExtensionArray(pa.array([86402.000003, None], type=pa.float64())) ) tm.assert_series_equal(result, expected) def test_dt_to_pytimedelta(): # GH 52284 data = [timedelta(1, 2, 3), timedelta(1, 2, 4)] ser = pd.Series(data, dtype=ArrowDtype(pa.duration("ns"))) result = ser.dt.to_pytimedelta() expected = np.array(data, dtype=object) tm.assert_numpy_array_equal(result, expected) assert all(type(res) is timedelta for res in result) expected = ser.astype("timedelta64[ns]").dt.to_pytimedelta() tm.assert_numpy_array_equal(result, expected) def test_dt_components(): # GH 52284 ser = pd.Series( [ pd.Timedelta( days=1, seconds=2, microseconds=3, nanoseconds=4, ), None, ], dtype=ArrowDtype(pa.duration("ns")), ) result = ser.dt.components expected = pd.DataFrame( [[1, 0, 0, 2, 0, 3, 4], [None, None, None, None, None, None, None]], columns=[ "days", "hours", "minutes", "seconds", "milliseconds", "microseconds", "nanoseconds", ], dtype="int32[pyarrow]", ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("skipna", [True, False]) def test_boolean_reduce_series_all_null(all_boolean_reductions, skipna): # GH51624 ser = pd.Series([None], dtype="float64[pyarrow]") result = getattr(ser, all_boolean_reductions)(skipna=skipna) if skipna: expected = all_boolean_reductions == "all" else: expected = pd.NA assert result is expected def test_from_sequence_of_strings_boolean(): true_strings = ["true", "TRUE", "True", "1", "1.0"] false_strings = ["false", "FALSE", "False", "0", "0.0"] nulls = [None] strings = true_strings + false_strings + nulls bools = ( [True] * len(true_strings) + [False] * len(false_strings) + [None] * len(nulls) ) result = ArrowExtensionArray._from_sequence_of_strings(strings, dtype=pa.bool_()) expected = pd.array(bools, dtype="boolean[pyarrow]") tm.assert_extension_array_equal(result, expected) strings = ["True", "foo"] with pytest.raises(pa.ArrowInvalid, match="Failed to parse"): ArrowExtensionArray._from_sequence_of_strings(strings, dtype=pa.bool_()) def test_concat_empty_arrow_backed_series(dtype): # GH#51734 ser = pd.Series([], dtype=dtype) expected = ser.copy() result = pd.concat([ser[np.array([], dtype=np.bool_)]]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["string", "string[pyarrow]"]) def test_series_from_string_array(dtype): arr = pa.array("the quick brown fox".split()) ser = pd.Series(arr, dtype=dtype) expected = pd.Series(ArrowExtensionArray(arr), dtype=dtype) tm.assert_series_equal(ser, expected) # _data was renamed to _pa_data class OldArrowExtensionArray(ArrowExtensionArray): def __getstate__(self): state = super().__getstate__() state["_data"] = state.pop("_pa_array") return state def test_pickle_old_arrowextensionarray(): data = pa.array([1]) expected = OldArrowExtensionArray(data) result = pickle.loads(pickle.dumps(expected)) tm.assert_extension_array_equal(result, expected) assert result._pa_array == pa.chunked_array(data) assert not hasattr(result, "_data") def test_setitem_boolean_replace_with_mask_segfault(): # GH#52059 N = 145_000 arr = ArrowExtensionArray(pa.chunked_array([np.ones((N,), dtype=np.bool_)])) expected = arr.copy() arr[np.zeros((N,), dtype=np.bool_)] = False assert arr._pa_array == expected._pa_array @pytest.mark.parametrize( "data, arrow_dtype", [ ([b"a", b"b"], pa.large_binary()), (["a", "b"], pa.large_string()), ], ) def test_conversion_large_dtypes_from_numpy_array(data, arrow_dtype): dtype = ArrowDtype(arrow_dtype) result = pd.array(np.array(data), dtype=dtype) expected = pd.array(data, dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_concat_null_array(): df = pd.DataFrame({"a": [None, None]}, dtype=ArrowDtype(pa.null())) df2 = pd.DataFrame({"a": [0, 1]}, dtype="int64[pyarrow]") result = pd.concat([df, df2], ignore_index=True) expected = pd.DataFrame({"a": [None, None, 0, 1]}, dtype="int64[pyarrow]") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.ALL_INT_PYARROW_DTYPES + tm.FLOAT_PYARROW_DTYPES) def test_describe_numeric_data(pa_type): # GH 52470 data = pd.Series([1, 2, 3], dtype=ArrowDtype(pa_type)) result = data.describe() expected = pd.Series( [3, 2, 1, 1, 1.5, 2.0, 2.5, 3], dtype=ArrowDtype(pa.float64()), index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.TIMEDELTA_PYARROW_DTYPES) def test_describe_timedelta_data(pa_type): # GH53001 data = pd.Series(range(1, 10), dtype=ArrowDtype(pa_type)) result = data.describe() expected = pd.Series( [9] + pd.to_timedelta([5, 2, 1, 3, 5, 7, 9], unit=pa_type.unit).tolist(), dtype=object, index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.DATETIME_PYARROW_DTYPES) def test_describe_datetime_data(pa_type): # GH53001 data = pd.Series(range(1, 10), dtype=ArrowDtype(pa_type)) result = data.describe() expected = pd.Series( [9] + [ pd.Timestamp(v, tz=pa_type.tz, unit=pa_type.unit) for v in [5, 1, 3, 5, 7, 9] ], dtype=object, index=["count", "mean", "min", "25%", "50%", "75%", "max"], ) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "pa_type", tm.DATETIME_PYARROW_DTYPES + tm.TIMEDELTA_PYARROW_DTYPES ) def test_quantile_temporal(pa_type): # GH52678 data = [1, 2, 3] ser = pd.Series(data, dtype=ArrowDtype(pa_type)) result = ser.quantile(0.1) expected = ser[0] assert result == expected def test_date32_repr(): # GH48238 arrow_dt = pa.array([date.fromisoformat("2020-01-01")], type=pa.date32()) ser = pd.Series(arrow_dt, dtype=ArrowDtype(arrow_dt.type)) assert repr(ser) == "0 2020-01-01\ndtype: date32[day][pyarrow]" def test_duration_overflow_from_ndarray_containing_nat(): # GH52843 data_ts = pd.to_datetime([1, None]) data_td = pd.to_timedelta([1, None]) ser_ts = pd.Series(data_ts, dtype=ArrowDtype(pa.timestamp("ns"))) ser_td = pd.Series(data_td, dtype=ArrowDtype(pa.duration("ns"))) result = ser_ts + ser_td expected = pd.Series([2, None], dtype=ArrowDtype(pa.timestamp("ns"))) tm.assert_series_equal(result, expected) def test_infer_dtype_pyarrow_dtype(data, request): res = lib.infer_dtype(data) assert res != "unknown-array" if data._hasna and res in ["floating", "datetime64", "timedelta64"]: mark = pytest.mark.xfail( reason="in infer_dtype pd.NA is not ignored in these cases " "even with skipna=True in the list(data) check below" ) request.applymarker(mark) assert res == lib.infer_dtype(list(data), skipna=True) @pytest.mark.parametrize( "pa_type", tm.DATETIME_PYARROW_DTYPES + tm.TIMEDELTA_PYARROW_DTYPES ) def test_from_sequence_temporal(pa_type): # GH 53171 val = 3 unit = pa_type.unit if pa.types.is_duration(pa_type): seq = [pd.Timedelta(val, unit=unit).as_unit(unit)] else: seq = [pd.Timestamp(val, unit=unit, tz=pa_type.tz).as_unit(unit)] result = ArrowExtensionArray._from_sequence(seq, dtype=pa_type) expected = ArrowExtensionArray(pa.array([val], type=pa_type)) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "pa_type", tm.DATETIME_PYARROW_DTYPES + tm.TIMEDELTA_PYARROW_DTYPES ) def test_setitem_temporal(pa_type): # GH 53171 unit = pa_type.unit if pa.types.is_duration(pa_type): val = pd.Timedelta(1, unit=unit).as_unit(unit) else: val = pd.Timestamp(1, unit=unit, tz=pa_type.tz).as_unit(unit) arr = ArrowExtensionArray(pa.array([1, 2, 3], type=pa_type)) result = arr.copy() result[:] = val expected = ArrowExtensionArray(pa.array([1, 1, 1], type=pa_type)) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "pa_type", tm.DATETIME_PYARROW_DTYPES + tm.TIMEDELTA_PYARROW_DTYPES ) def test_arithmetic_temporal(pa_type, request): # GH 53171 arr = ArrowExtensionArray(pa.array([1, 2, 3], type=pa_type)) unit = pa_type.unit result = arr - pd.Timedelta(1, unit=unit).as_unit(unit) expected = ArrowExtensionArray(pa.array([0, 1, 2], type=pa_type)) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "pa_type", tm.DATETIME_PYARROW_DTYPES + tm.TIMEDELTA_PYARROW_DTYPES ) def test_comparison_temporal(pa_type): # GH 53171 unit = pa_type.unit if pa.types.is_duration(pa_type): val = pd.Timedelta(1, unit=unit).as_unit(unit) else: val = pd.Timestamp(1, unit=unit, tz=pa_type.tz).as_unit(unit) arr = ArrowExtensionArray(pa.array([1, 2, 3], type=pa_type)) result = arr > val expected = ArrowExtensionArray(pa.array([False, True, True], type=pa.bool_())) tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "pa_type", tm.DATETIME_PYARROW_DTYPES + tm.TIMEDELTA_PYARROW_DTYPES ) def test_getitem_temporal(pa_type): # GH 53326 arr = ArrowExtensionArray(pa.array([1, 2, 3], type=pa_type)) result = arr[1] if pa.types.is_duration(pa_type): expected = pd.Timedelta(2, unit=pa_type.unit).as_unit(pa_type.unit) assert isinstance(result, pd.Timedelta) else: expected = pd.Timestamp(2, unit=pa_type.unit, tz=pa_type.tz).as_unit( pa_type.unit ) assert isinstance(result, pd.Timestamp) assert result.unit == expected.unit assert result == expected @pytest.mark.parametrize( "pa_type", tm.DATETIME_PYARROW_DTYPES + tm.TIMEDELTA_PYARROW_DTYPES ) def test_iter_temporal(pa_type): # GH 53326 arr = ArrowExtensionArray(pa.array([1, None], type=pa_type)) result = list(arr) if pa.types.is_duration(pa_type): expected = [ pd.Timedelta(1, unit=pa_type.unit).as_unit(pa_type.unit), pd.NA, ] assert isinstance(result[0], pd.Timedelta) else: expected = [ pd.Timestamp(1, unit=pa_type.unit, tz=pa_type.tz).as_unit(pa_type.unit), pd.NA, ] assert isinstance(result[0], pd.Timestamp) assert result[0].unit == expected[0].unit assert result == expected def test_groupby_series_size_returns_pa_int(data): # GH 54132 ser = pd.Series(data[:3], index=["a", "a", "b"]) result = ser.groupby(level=0).size() expected = pd.Series([2, 1], dtype="int64[pyarrow]", index=["a", "b"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "pa_type", tm.DATETIME_PYARROW_DTYPES + tm.TIMEDELTA_PYARROW_DTYPES, ids=repr ) @pytest.mark.parametrize("dtype", [None, object]) def test_to_numpy_temporal(pa_type, dtype): # GH 53326 # GH 55997: Return datetime64/timedelta64 types with NaT if possible arr = ArrowExtensionArray(pa.array([1, None], type=pa_type)) result = arr.to_numpy(dtype=dtype) if pa.types.is_duration(pa_type): value = pd.Timedelta(1, unit=pa_type.unit).as_unit(pa_type.unit) else: value = pd.Timestamp(1, unit=pa_type.unit, tz=pa_type.tz).as_unit(pa_type.unit) if dtype == object or (pa.types.is_timestamp(pa_type) and pa_type.tz is not None): if dtype == object: na = pd.NA else: na = pd.NaT expected = np.array([value, na], dtype=object) assert result[0].unit == value.unit else: na = pa_type.to_pandas_dtype().type("nat", pa_type.unit) value = value.to_numpy() expected = np.array([value, na]) assert np.datetime_data(result[0])[0] == pa_type.unit tm.assert_numpy_array_equal(result, expected) def test_groupby_count_return_arrow_dtype(data_missing): df = pd.DataFrame({"A": [1, 1], "B": data_missing, "C": data_missing}) result = df.groupby("A").count() expected = pd.DataFrame( [[1, 1]], index=pd.Index([1], name="A"), columns=["B", "C"], dtype="int64[pyarrow]", ) tm.assert_frame_equal(result, expected) def test_fixed_size_list(): # GH#55000 ser = pd.Series( [[1, 2], [3, 4]], dtype=ArrowDtype(pa.list_(pa.int64(), list_size=2)) ) result = ser.dtype.type assert result == list def test_arrowextensiondtype_dataframe_repr(): # GH 54062 df = pd.DataFrame( pd.period_range("2012", periods=3), columns=["col"], dtype=ArrowDtype(ArrowPeriodType("D")), ) result = repr(df) # TODO: repr value may not be expected; address how # pyarrow.ExtensionType values are displayed expected = " col\n0 15340\n1 15341\n2 15342" assert result == expected def test_pow_missing_operand(): # GH 55512 k = pd.Series([2, None], dtype="int64[pyarrow]") result = k.pow(None, fill_value=3) expected = pd.Series([8, None], dtype="int64[pyarrow]") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.TIMEDELTA_PYARROW_DTYPES) def test_duration_fillna_numpy(pa_type): # GH 54707 ser1 = pd.Series([None, 2], dtype=ArrowDtype(pa_type)) ser2 = pd.Series(np.array([1, 3], dtype=f"m8[{pa_type.unit}]")) result = ser1.fillna(ser2) expected = pd.Series([1, 2], dtype=ArrowDtype(pa_type)) tm.assert_series_equal(result, expected) def test_comparison_not_propagating_arrow_error(): # GH#54944 a = pd.Series([1 << 63], dtype="uint64[pyarrow]") b = pd.Series([None], dtype="int64[pyarrow]") with pytest.raises(pa.lib.ArrowInvalid, match="Integer value"): a < b def test_factorize_chunked_dictionary(): # GH 54844 pa_array = pa.chunked_array( [pa.array(["a"]).dictionary_encode(), pa.array(["b"]).dictionary_encode()] ) ser = pd.Series(ArrowExtensionArray(pa_array)) res_indices, res_uniques = ser.factorize() exp_indicies = np.array([0, 1], dtype=np.intp) exp_uniques = pd.Index(ArrowExtensionArray(pa_array.combine_chunks())) tm.assert_numpy_array_equal(res_indices, exp_indicies) tm.assert_index_equal(res_uniques, exp_uniques) def test_dictionary_astype_categorical(): # GH#56672 arrs = [ pa.array(np.array(["a", "x", "c", "a"])).dictionary_encode(), pa.array(np.array(["a", "d", "c"])).dictionary_encode(), ] ser = pd.Series(ArrowExtensionArray(pa.chunked_array(arrs))) result = ser.astype("category") categories = pd.Index(["a", "x", "c", "d"], dtype=ArrowDtype(pa.string())) expected = pd.Series( ["a", "x", "c", "a", "a", "d", "c"], dtype=pd.CategoricalDtype(categories=categories), ) tm.assert_series_equal(result, expected) def test_arrow_floordiv(): # GH 55561 a = pd.Series([-7], dtype="int64[pyarrow]") b = pd.Series([4], dtype="int64[pyarrow]") expected = pd.Series([-2], dtype="int64[pyarrow]") result = a // b tm.assert_series_equal(result, expected) def test_arrow_floordiv_large_values(): # GH 56645 a = pd.Series([1425801600000000000], dtype="int64[pyarrow]") expected = pd.Series([1425801600000], dtype="int64[pyarrow]") result = a // 1_000_000 tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["int64[pyarrow]", "uint64[pyarrow]"]) def test_arrow_floordiv_large_integral_result(dtype): # GH 56676 a = pd.Series([18014398509481983], dtype=dtype) result = a // 1 tm.assert_series_equal(result, a) @pytest.mark.parametrize("pa_type", tm.SIGNED_INT_PYARROW_DTYPES) def test_arrow_floordiv_larger_divisor(pa_type): # GH 56676 dtype = ArrowDtype(pa_type) a = pd.Series([-23], dtype=dtype) result = a // 24 expected = pd.Series([-1], dtype=dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.SIGNED_INT_PYARROW_DTYPES) def test_arrow_floordiv_integral_invalid(pa_type): # GH 56676 min_value = np.iinfo(pa_type.to_pandas_dtype()).min a = pd.Series([min_value], dtype=ArrowDtype(pa_type)) with pytest.raises(pa.lib.ArrowInvalid, match="overflow|not in range"): a // -1 with pytest.raises(pa.lib.ArrowInvalid, match="divide by zero"): a // 0 @pytest.mark.parametrize("dtype", tm.FLOAT_PYARROW_DTYPES_STR_REPR) def test_arrow_floordiv_floating_0_divisor(dtype): # GH 56676 a = pd.Series([2], dtype=dtype) result = a // 0 expected = pd.Series([float("inf")], dtype=dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["float64", "datetime64[ns]", "timedelta64[ns]"]) def test_astype_int_with_null_to_numpy_dtype(dtype): # GH 57093 ser = pd.Series([1, None], dtype="int64[pyarrow]") result = ser.astype(dtype) expected = pd.Series([1, None], dtype=dtype) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("pa_type", tm.ALL_INT_PYARROW_DTYPES) def test_arrow_integral_floordiv_large_values(pa_type): # GH 56676 max_value = np.iinfo(pa_type.to_pandas_dtype()).max dtype = ArrowDtype(pa_type) a = pd.Series([max_value], dtype=dtype) b = pd.Series([1], dtype=dtype) result = a // b tm.assert_series_equal(result, a) @pytest.mark.parametrize("dtype", ["int64[pyarrow]", "uint64[pyarrow]"]) def test_arrow_true_division_large_divisor(dtype): # GH 56706 a = pd.Series([0], dtype=dtype) b = pd.Series([18014398509481983], dtype=dtype) expected = pd.Series([0], dtype="float64[pyarrow]") result = a / b tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["int64[pyarrow]", "uint64[pyarrow]"]) def test_arrow_floor_division_large_divisor(dtype): # GH 56706 a = pd.Series([0], dtype=dtype) b = pd.Series([18014398509481983], dtype=dtype) expected = pd.Series([0], dtype=dtype) result = a // b tm.assert_series_equal(result, expected) def test_string_to_datetime_parsing_cast(): # GH 56266 string_dates = ["2020-01-01 04:30:00", "2020-01-02 00:00:00", "2020-01-03 00:00:00"] result = pd.Series(string_dates, dtype="timestamp[ns][pyarrow]") expected = pd.Series( ArrowExtensionArray(pa.array(pd.to_datetime(string_dates), from_pandas=True)) ) tm.assert_series_equal(result, expected) def test_string_to_time_parsing_cast(): # GH 56463 string_times = ["11:41:43.076160"] result = pd.Series(string_times, dtype="time64[us][pyarrow]") expected = pd.Series( ArrowExtensionArray(pa.array([time(11, 41, 43, 76160)], from_pandas=True)) ) tm.assert_series_equal(result, expected) def test_to_numpy_float(): # GH#56267 ser = pd.Series([32, 40, None], dtype="float[pyarrow]") result = ser.astype("float64") expected = pd.Series([32, 40, np.nan], dtype="float64") tm.assert_series_equal(result, expected) def test_to_numpy_timestamp_to_int(): # GH 55997 ser = pd.Series(["2020-01-01 04:30:00"], dtype="timestamp[ns][pyarrow]") result = ser.to_numpy(dtype=np.int64) expected = np.array([1577853000000000000]) tm.assert_numpy_array_equal(result, expected) def test_map_numeric_na_action(): ser = pd.Series([32, 40, None], dtype="int64[pyarrow]") result = ser.map(lambda x: 42, na_action="ignore") expected = pd.Series([42.0, 42.0, np.nan], dtype="float64") tm.assert_series_equal(result, expected)