import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm class TestDataFrameNonuniqueIndexes: def test_setattr_columns_vs_construct_with_columns(self): # assignment # GH 3687 arr = np.random.default_rng(2).standard_normal((3, 2)) idx = list(range(2)) df = DataFrame(arr, columns=["A", "A"]) df.columns = idx expected = DataFrame(arr, columns=idx) tm.assert_frame_equal(df, expected) def test_setattr_columns_vs_construct_with_columns_datetimeindx(self): idx = date_range("20130101", periods=4, freq="QE-NOV") df = DataFrame( [[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=["a", "a", "a", "a"] ) df.columns = idx expected = DataFrame([[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=idx) tm.assert_frame_equal(df, expected) def test_insert_with_duplicate_columns(self): # insert df = DataFrame( [[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=["foo", "bar", "foo", "hello"], ) df["string"] = "bah" expected = DataFrame( [[1, 1, 1, 5, "bah"], [1, 1, 2, 5, "bah"], [2, 1, 3, 5, "bah"]], columns=["foo", "bar", "foo", "hello", "string"], ) tm.assert_frame_equal(df, expected) with pytest.raises(ValueError, match="Length of value"): df.insert(0, "AnotherColumn", range(len(df.index) - 1)) # insert same dtype df["foo2"] = 3 expected = DataFrame( [[1, 1, 1, 5, "bah", 3], [1, 1, 2, 5, "bah", 3], [2, 1, 3, 5, "bah", 3]], columns=["foo", "bar", "foo", "hello", "string", "foo2"], ) tm.assert_frame_equal(df, expected) # set (non-dup) df["foo2"] = 4 expected = DataFrame( [[1, 1, 1, 5, "bah", 4], [1, 1, 2, 5, "bah", 4], [2, 1, 3, 5, "bah", 4]], columns=["foo", "bar", "foo", "hello", "string", "foo2"], ) tm.assert_frame_equal(df, expected) df["foo2"] = 3 # delete (non dup) del df["bar"] expected = DataFrame( [[1, 1, 5, "bah", 3], [1, 2, 5, "bah", 3], [2, 3, 5, "bah", 3]], columns=["foo", "foo", "hello", "string", "foo2"], ) tm.assert_frame_equal(df, expected) # try to delete again (its not consolidated) del df["hello"] expected = DataFrame( [[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]], columns=["foo", "foo", "string", "foo2"], ) tm.assert_frame_equal(df, expected) # consolidate df = df._consolidate() expected = DataFrame( [[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]], columns=["foo", "foo", "string", "foo2"], ) tm.assert_frame_equal(df, expected) # insert df.insert(2, "new_col", 5.0) expected = DataFrame( [[1, 1, 5.0, "bah", 3], [1, 2, 5.0, "bah", 3], [2, 3, 5.0, "bah", 3]], columns=["foo", "foo", "new_col", "string", "foo2"], ) tm.assert_frame_equal(df, expected) # insert a dup with pytest.raises(ValueError, match="cannot insert"): df.insert(2, "new_col", 4.0) df.insert(2, "new_col", 4.0, allow_duplicates=True) expected = DataFrame( [ [1, 1, 4.0, 5.0, "bah", 3], [1, 2, 4.0, 5.0, "bah", 3], [2, 3, 4.0, 5.0, "bah", 3], ], columns=["foo", "foo", "new_col", "new_col", "string", "foo2"], ) tm.assert_frame_equal(df, expected) # delete (dup) del df["foo"] expected = DataFrame( [[4.0, 5.0, "bah", 3], [4.0, 5.0, "bah", 3], [4.0, 5.0, "bah", 3]], columns=["new_col", "new_col", "string", "foo2"], ) tm.assert_frame_equal(df, expected) def test_dup_across_dtypes(self): # dup across dtypes df = DataFrame( [[1, 1, 1.0, 5], [1, 1, 2.0, 5], [2, 1, 3.0, 5]], columns=["foo", "bar", "foo", "hello"], ) df["foo2"] = 7.0 expected = DataFrame( [[1, 1, 1.0, 5, 7.0], [1, 1, 2.0, 5, 7.0], [2, 1, 3.0, 5, 7.0]], columns=["foo", "bar", "foo", "hello", "foo2"], ) tm.assert_frame_equal(df, expected) result = df["foo"] expected = DataFrame([[1, 1.0], [1, 2.0], [2, 3.0]], columns=["foo", "foo"]) tm.assert_frame_equal(result, expected) # multiple replacements df["foo"] = "string" expected = DataFrame( [ ["string", 1, "string", 5, 7.0], ["string", 1, "string", 5, 7.0], ["string", 1, "string", 5, 7.0], ], columns=["foo", "bar", "foo", "hello", "foo2"], ) tm.assert_frame_equal(df, expected) del df["foo"] expected = DataFrame( [[1, 5, 7.0], [1, 5, 7.0], [1, 5, 7.0]], columns=["bar", "hello", "foo2"] ) tm.assert_frame_equal(df, expected) def test_column_dups_indexes(self): # check column dups with index equal and not equal to df's index df = DataFrame( np.random.default_rng(2).standard_normal((5, 3)), index=["a", "b", "c", "d", "e"], columns=["A", "B", "A"], ) for index in [df.index, pd.Index(list("edcba"))]: this_df = df.copy() expected_ser = Series(index.values, index=this_df.index) expected_df = DataFrame( {"A": expected_ser, "B": this_df["B"]}, columns=["A", "B", "A"], ) this_df["A"] = index tm.assert_frame_equal(this_df, expected_df) def test_changing_dtypes_with_duplicate_columns(self): # multiple assignments that change dtypes # the location indexer is a slice # GH 6120 df = DataFrame( np.random.default_rng(2).standard_normal((5, 2)), columns=["that", "that"] ) expected = DataFrame(1.0, index=range(5), columns=["that", "that"]) df["that"] = 1.0 tm.assert_frame_equal(df, expected) df = DataFrame( np.random.default_rng(2).random((5, 2)), columns=["that", "that"] ) expected = DataFrame(1, index=range(5), columns=["that", "that"]) df["that"] = 1 tm.assert_frame_equal(df, expected) def test_dup_columns_comparisons(self): # equality df1 = DataFrame([[1, 2], [2, np.nan], [3, 4], [4, 4]], columns=["A", "B"]) df2 = DataFrame([[0, 1], [2, 4], [2, np.nan], [4, 5]], columns=["A", "A"]) # not-comparing like-labelled msg = ( r"Can only compare identically-labeled \(both index and columns\) " "DataFrame objects" ) with pytest.raises(ValueError, match=msg): df1 == df2 df1r = df1.reindex_like(df2) result = df1r == df2 expected = DataFrame( [[False, True], [True, False], [False, False], [True, False]], columns=["A", "A"], ) tm.assert_frame_equal(result, expected) def test_mixed_column_selection(self): # mixed column selection # GH 5639 dfbool = DataFrame( { "one": Series([True, True, False], index=["a", "b", "c"]), "two": Series([False, False, True, False], index=["a", "b", "c", "d"]), "three": Series([False, True, True, True], index=["a", "b", "c", "d"]), } ) expected = pd.concat([dfbool["one"], dfbool["three"], dfbool["one"]], axis=1) result = dfbool[["one", "three", "one"]] tm.assert_frame_equal(result, expected) def test_multi_axis_dups(self): # multi-axis dups # GH 6121 df = DataFrame( np.arange(25.0).reshape(5, 5), index=["a", "b", "c", "d", "e"], columns=["A", "B", "C", "D", "E"], ) z = df[["A", "C", "A"]].copy() expected = z.loc[["a", "c", "a"]] df = DataFrame( np.arange(25.0).reshape(5, 5), index=["a", "b", "c", "d", "e"], columns=["A", "B", "C", "D", "E"], ) z = df[["A", "C", "A"]] result = z.loc[["a", "c", "a"]] tm.assert_frame_equal(result, expected) def test_columns_with_dups(self): # GH 3468 related # basic df = DataFrame([[1, 2]], columns=["a", "a"]) df.columns = ["a", "a.1"] expected = DataFrame([[1, 2]], columns=["a", "a.1"]) tm.assert_frame_equal(df, expected) df = DataFrame([[1, 2, 3]], columns=["b", "a", "a"]) df.columns = ["b", "a", "a.1"] expected = DataFrame([[1, 2, 3]], columns=["b", "a", "a.1"]) tm.assert_frame_equal(df, expected) def test_columns_with_dup_index(self): # with a dup index df = DataFrame([[1, 2]], columns=["a", "a"]) df.columns = ["b", "b"] expected = DataFrame([[1, 2]], columns=["b", "b"]) tm.assert_frame_equal(df, expected) def test_multi_dtype(self): # multi-dtype df = DataFrame( [[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=["a", "a", "b", "b", "d", "c", "c"], ) df.columns = list("ABCDEFG") expected = DataFrame( [[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) def test_multi_dtype2(self): df = DataFrame([[1, 2, "foo", "bar"]], columns=["a", "a", "a", "a"]) df.columns = ["a", "a.1", "a.2", "a.3"] expected = DataFrame([[1, 2, "foo", "bar"]], columns=["a", "a.1", "a.2", "a.3"]) tm.assert_frame_equal(df, expected) def test_dups_across_blocks(self, using_array_manager): # dups across blocks df_float = DataFrame( np.random.default_rng(2).standard_normal((10, 3)), dtype="float64" ) df_int = DataFrame( np.random.default_rng(2).standard_normal((10, 3)).astype("int64") ) df_bool = DataFrame(True, index=df_float.index, columns=df_float.columns) df_object = DataFrame("foo", index=df_float.index, columns=df_float.columns) df_dt = DataFrame( pd.Timestamp("20010101"), index=df_float.index, columns=df_float.columns ) df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) if not using_array_manager: assert len(df._mgr.blknos) == len(df.columns) assert len(df._mgr.blklocs) == len(df.columns) # testing iloc for i in range(len(df.columns)): df.iloc[:, i] def test_dup_columns_across_dtype(self): # dup columns across dtype GH 2079/2194 vals = [[1, -1, 2.0], [2, -2, 3.0]] rs = DataFrame(vals, columns=["A", "A", "B"]) xp = DataFrame(vals) xp.columns = ["A", "A", "B"] tm.assert_frame_equal(rs, xp) def test_set_value_by_index(self): # See gh-12344 warn = None msg = "will attempt to set the values inplace" df = DataFrame(np.arange(9).reshape(3, 3).T) df.columns = list("AAA") expected = df.iloc[:, 2].copy() with tm.assert_produces_warning(warn, match=msg): df.iloc[:, 0] = 3 tm.assert_series_equal(df.iloc[:, 2], expected) df = DataFrame(np.arange(9).reshape(3, 3).T) df.columns = [2, float(2), str(2)] expected = df.iloc[:, 1].copy() with tm.assert_produces_warning(warn, match=msg): df.iloc[:, 0] = 3 tm.assert_series_equal(df.iloc[:, 1], expected)