from operator import methodcaller import numpy as np import pytest import pandas as pd from pandas import ( MultiIndex, Series, date_range, ) import pandas._testing as tm class TestSeries: @pytest.mark.parametrize("func", ["rename_axis", "_set_axis_name"]) def test_set_axis_name_mi(self, func): ser = Series( [11, 21, 31], index=MultiIndex.from_tuples( [("A", x) for x in ["a", "B", "c"]], names=["l1", "l2"] ), ) result = methodcaller(func, ["L1", "L2"])(ser) assert ser.index.name is None assert ser.index.names == ["l1", "l2"] assert result.index.name is None assert result.index.names, ["L1", "L2"] def test_set_axis_name_raises(self): ser = Series([1]) msg = "No axis named 1 for object type Series" with pytest.raises(ValueError, match=msg): ser._set_axis_name(name="a", axis=1) def test_get_bool_data_preserve_dtype(self): ser = Series([True, False, True]) result = ser._get_bool_data() tm.assert_series_equal(result, ser) def test_nonzero_single_element(self): # allow single item via bool method msg_warn = ( "Series.bool is now deprecated and will be removed " "in future version of pandas" ) ser = Series([True]) ser1 = Series([False]) with tm.assert_produces_warning(FutureWarning, match=msg_warn): assert ser.bool() with tm.assert_produces_warning(FutureWarning, match=msg_warn): assert not ser1.bool() @pytest.mark.parametrize("data", [np.nan, pd.NaT, True, False]) def test_nonzero_single_element_raise_1(self, data): # single item nan to raise series = Series([data]) msg = "The truth value of a Series is ambiguous" with pytest.raises(ValueError, match=msg): bool(series) @pytest.mark.parametrize("data", [np.nan, pd.NaT]) def test_nonzero_single_element_raise_2(self, data): msg_warn = ( "Series.bool is now deprecated and will be removed " "in future version of pandas" ) msg_err = "bool cannot act on a non-boolean single element Series" series = Series([data]) with tm.assert_produces_warning(FutureWarning, match=msg_warn): with pytest.raises(ValueError, match=msg_err): series.bool() @pytest.mark.parametrize("data", [(True, True), (False, False)]) def test_nonzero_multiple_element_raise(self, data): # multiple bool are still an error msg_warn = ( "Series.bool is now deprecated and will be removed " "in future version of pandas" ) msg_err = "The truth value of a Series is ambiguous" series = Series([data]) with pytest.raises(ValueError, match=msg_err): bool(series) with tm.assert_produces_warning(FutureWarning, match=msg_warn): with pytest.raises(ValueError, match=msg_err): series.bool() @pytest.mark.parametrize("data", [1, 0, "a", 0.0]) def test_nonbool_single_element_raise(self, data): # single non-bool are an error msg_warn = ( "Series.bool is now deprecated and will be removed " "in future version of pandas" ) msg_err1 = "The truth value of a Series is ambiguous" msg_err2 = "bool cannot act on a non-boolean single element Series" series = Series([data]) with pytest.raises(ValueError, match=msg_err1): bool(series) with tm.assert_produces_warning(FutureWarning, match=msg_warn): with pytest.raises(ValueError, match=msg_err2): series.bool() def test_metadata_propagation_indiv_resample(self): # resample ts = Series( np.random.default_rng(2).random(1000), index=date_range("20130101", periods=1000, freq="s"), name="foo", ) result = ts.resample("1min").mean() tm.assert_metadata_equivalent(ts, result) result = ts.resample("1min").min() tm.assert_metadata_equivalent(ts, result) result = ts.resample("1min").apply(lambda x: x.sum()) tm.assert_metadata_equivalent(ts, result) def test_metadata_propagation_indiv(self, monkeypatch): # check that the metadata matches up on the resulting ops ser = Series(range(3), range(3)) ser.name = "foo" ser2 = Series(range(3), range(3)) ser2.name = "bar" result = ser.T tm.assert_metadata_equivalent(ser, result) def finalize(self, other, method=None, **kwargs): for name in self._metadata: if method == "concat" and name == "filename": value = "+".join( [ getattr(obj, name) for obj in other.objs if getattr(obj, name, None) ] ) object.__setattr__(self, name, value) else: object.__setattr__(self, name, getattr(other, name, None)) return self with monkeypatch.context() as m: m.setattr(Series, "_metadata", ["name", "filename"]) m.setattr(Series, "__finalize__", finalize) ser.filename = "foo" ser2.filename = "bar" result = pd.concat([ser, ser2]) assert result.filename == "foo+bar" assert result.name is None