""" Tests of the groupby API, including internal consistency and with other pandas objects. Tests in this file should only check the existence, names, and arguments of groupby methods. It should not test the results of any groupby operation. """ import inspect import pytest from pandas import ( DataFrame, Series, ) from pandas.core.groupby.base import ( groupby_other_methods, reduction_kernels, transformation_kernels, ) from pandas.core.groupby.generic import ( DataFrameGroupBy, SeriesGroupBy, ) def test_tab_completion(multiindex_dataframe_random_data): grp = multiindex_dataframe_random_data.groupby(level="second") results = {v for v in dir(grp) if not v.startswith("_")} expected = { "A", "B", "C", "agg", "aggregate", "apply", "boxplot", "filter", "first", "get_group", "groups", "hist", "indices", "last", "max", "mean", "median", "min", "ngroups", "nth", "ohlc", "plot", "prod", "size", "std", "sum", "transform", "var", "sem", "count", "nunique", "head", "describe", "cummax", "quantile", "rank", "cumprod", "tail", "resample", "cummin", "fillna", "cumsum", "cumcount", "ngroup", "all", "shift", "skew", "take", "pct_change", "any", "corr", "corrwith", "cov", "dtypes", "ndim", "diff", "idxmax", "idxmin", "ffill", "bfill", "rolling", "expanding", "pipe", "sample", "ewm", "value_counts", } assert results == expected def test_all_methods_categorized(multiindex_dataframe_random_data): grp = multiindex_dataframe_random_data.groupby( multiindex_dataframe_random_data.iloc[:, 0] ) names = {_ for _ in dir(grp) if not _.startswith("_")} - set( multiindex_dataframe_random_data.columns ) new_names = set(names) new_names -= reduction_kernels new_names -= transformation_kernels new_names -= groupby_other_methods assert not reduction_kernels & transformation_kernels assert not reduction_kernels & groupby_other_methods assert not transformation_kernels & groupby_other_methods # new public method? if new_names: msg = f""" There are uncategorized methods defined on the Grouper class: {new_names}. Was a new method recently added? Every public method On Grouper must appear in exactly one the following three lists defined in pandas.core.groupby.base: - `reduction_kernels` - `transformation_kernels` - `groupby_other_methods` see the comments in pandas/core/groupby/base.py for guidance on how to fix this test. """ raise AssertionError(msg) # removed a public method? all_categorized = reduction_kernels | transformation_kernels | groupby_other_methods if names != all_categorized: msg = f""" Some methods which are supposed to be on the Grouper class are missing: {all_categorized - names}. They're still defined in one of the lists that live in pandas/core/groupby/base.py. If you removed a method, you should update them """ raise AssertionError(msg) def test_frame_consistency(groupby_func): # GH#48028 if groupby_func in ("first", "last"): msg = "first and last are entirely different between frame and groupby" pytest.skip(reason=msg) if groupby_func in ("cumcount", "ngroup"): assert not hasattr(DataFrame, groupby_func) return frame_method = getattr(DataFrame, groupby_func) gb_method = getattr(DataFrameGroupBy, groupby_func) result = set(inspect.signature(gb_method).parameters) if groupby_func == "size": # "size" is a method on GroupBy but property on DataFrame: expected = {"self"} else: expected = set(inspect.signature(frame_method).parameters) # Exclude certain arguments from result and expected depending on the operation # Some of these may be purposeful inconsistencies between the APIs exclude_expected, exclude_result = set(), set() if groupby_func in ("any", "all"): exclude_expected = {"kwargs", "bool_only", "axis"} elif groupby_func in ("count",): exclude_expected = {"numeric_only", "axis"} elif groupby_func in ("nunique",): exclude_expected = {"axis"} elif groupby_func in ("max", "min"): exclude_expected = {"axis", "kwargs", "skipna"} exclude_result = {"min_count", "engine", "engine_kwargs"} elif groupby_func in ("mean", "std", "sum", "var"): exclude_expected = {"axis", "kwargs", "skipna"} exclude_result = {"engine", "engine_kwargs"} elif groupby_func in ("median", "prod", "sem"): exclude_expected = {"axis", "kwargs", "skipna"} elif groupby_func in ("backfill", "bfill", "ffill", "pad"): exclude_expected = {"downcast", "inplace", "axis", "limit_area"} elif groupby_func in ("cummax", "cummin"): exclude_expected = {"skipna", "args"} exclude_result = {"numeric_only"} elif groupby_func in ("cumprod", "cumsum"): exclude_expected = {"skipna"} elif groupby_func in ("pct_change",): exclude_expected = {"kwargs"} exclude_result = {"axis"} elif groupby_func in ("rank",): exclude_expected = {"numeric_only"} elif groupby_func in ("quantile",): exclude_expected = {"method", "axis"} # Ensure excluded arguments are actually in the signatures assert result & exclude_result == exclude_result assert expected & exclude_expected == exclude_expected result -= exclude_result expected -= exclude_expected assert result == expected def test_series_consistency(request, groupby_func): # GH#48028 if groupby_func in ("first", "last"): pytest.skip("first and last are entirely different between Series and groupby") if groupby_func in ("cumcount", "corrwith", "ngroup"): assert not hasattr(Series, groupby_func) return series_method = getattr(Series, groupby_func) gb_method = getattr(SeriesGroupBy, groupby_func) result = set(inspect.signature(gb_method).parameters) if groupby_func == "size": # "size" is a method on GroupBy but property on Series expected = {"self"} else: expected = set(inspect.signature(series_method).parameters) # Exclude certain arguments from result and expected depending on the operation # Some of these may be purposeful inconsistencies between the APIs exclude_expected, exclude_result = set(), set() if groupby_func in ("any", "all"): exclude_expected = {"kwargs", "bool_only", "axis"} elif groupby_func in ("diff",): exclude_result = {"axis"} elif groupby_func in ("max", "min"): exclude_expected = {"axis", "kwargs", "skipna"} exclude_result = {"min_count", "engine", "engine_kwargs"} elif groupby_func in ("mean", "std", "sum", "var"): exclude_expected = {"axis", "kwargs", "skipna"} exclude_result = {"engine", "engine_kwargs"} elif groupby_func in ("median", "prod", "sem"): exclude_expected = {"axis", "kwargs", "skipna"} elif groupby_func in ("backfill", "bfill", "ffill", "pad"): exclude_expected = {"downcast", "inplace", "axis", "limit_area"} elif groupby_func in ("cummax", "cummin"): exclude_expected = {"skipna", "args"} exclude_result = {"numeric_only"} elif groupby_func in ("cumprod", "cumsum"): exclude_expected = {"skipna"} elif groupby_func in ("pct_change",): exclude_expected = {"kwargs"} exclude_result = {"axis"} elif groupby_func in ("rank",): exclude_expected = {"numeric_only"} elif groupby_func in ("idxmin", "idxmax"): exclude_expected = {"args", "kwargs"} elif groupby_func in ("quantile",): exclude_result = {"numeric_only"} # Ensure excluded arguments are actually in the signatures assert result & exclude_result == exclude_result assert expected & exclude_expected == exclude_expected result -= exclude_result expected -= exclude_expected assert result == expected