import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, date_range, ) import pandas._testing as tm @pytest.mark.parametrize("func", ["ffill", "bfill"]) def test_groupby_column_index_name_lost_fill_funcs(func): # GH: 29764 groupby loses index sometimes df = DataFrame( [[1, 1.0, -1.0], [1, np.nan, np.nan], [1, 2.0, -2.0]], columns=Index(["type", "a", "b"], name="idx"), ) df_grouped = df.groupby(["type"])[["a", "b"]] result = getattr(df_grouped, func)().columns expected = Index(["a", "b"], name="idx") tm.assert_index_equal(result, expected) @pytest.mark.parametrize("func", ["ffill", "bfill"]) def test_groupby_fill_duplicate_column_names(func): # GH: 25610 ValueError with duplicate column names df1 = DataFrame({"field1": [1, 3, 4], "field2": [1, 3, 4]}) df2 = DataFrame({"field1": [1, np.nan, 4]}) df_grouped = pd.concat([df1, df2], axis=1).groupby(by=["field2"]) expected = DataFrame( [[1, 1.0], [3, np.nan], [4, 4.0]], columns=["field1", "field1"] ) result = getattr(df_grouped, func)() tm.assert_frame_equal(result, expected) def test_ffill_missing_arguments(): # GH 14955 df = DataFrame({"a": [1, 2], "b": [1, 1]}) msg = "DataFrameGroupBy.fillna is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): with pytest.raises(ValueError, match="Must specify a fill"): df.groupby("b").fillna() @pytest.mark.parametrize( "method, expected", [("ffill", [None, "a", "a"]), ("bfill", ["a", "a", None])] ) def test_fillna_with_string_dtype(method, expected): # GH 40250 df = DataFrame({"a": pd.array([None, "a", None], dtype="string"), "b": [0, 0, 0]}) grp = df.groupby("b") msg = "DataFrameGroupBy.fillna is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): result = grp.fillna(method=method) expected = DataFrame({"a": pd.array(expected, dtype="string")}) tm.assert_frame_equal(result, expected) def test_fill_consistency(): # GH9221 # pass thru keyword arguments to the generated wrapper # are set if the passed kw is None (only) df = DataFrame( index=pd.MultiIndex.from_product( [["value1", "value2"], date_range("2014-01-01", "2014-01-06")] ), columns=Index(["1", "2"], name="id"), ) df["1"] = [ np.nan, 1, np.nan, np.nan, 11, np.nan, np.nan, 2, np.nan, np.nan, 22, np.nan, ] df["2"] = [ np.nan, 3, np.nan, np.nan, 33, np.nan, np.nan, 4, np.nan, np.nan, 44, np.nan, ] msg = "The 'axis' keyword in DataFrame.groupby is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): expected = df.groupby(level=0, axis=0).fillna(method="ffill") msg = "DataFrame.groupby with axis=1 is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("method", ["ffill", "bfill"]) @pytest.mark.parametrize("dropna", [True, False]) @pytest.mark.parametrize("has_nan_group", [True, False]) def test_ffill_handles_nan_groups(dropna, method, has_nan_group): # GH 34725 df_without_nan_rows = DataFrame([(1, 0.1), (2, 0.2)]) ridx = [-1, 0, -1, -1, 1, -1] df = df_without_nan_rows.reindex(ridx).reset_index(drop=True) group_b = np.nan if has_nan_group else "b" df["group_col"] = pd.Series(["a"] * 3 + [group_b] * 3) grouped = df.groupby(by="group_col", dropna=dropna) result = getattr(grouped, method)(limit=None) expected_rows = { ("ffill", True, True): [-1, 0, 0, -1, -1, -1], ("ffill", True, False): [-1, 0, 0, -1, 1, 1], ("ffill", False, True): [-1, 0, 0, -1, 1, 1], ("ffill", False, False): [-1, 0, 0, -1, 1, 1], ("bfill", True, True): [0, 0, -1, -1, -1, -1], ("bfill", True, False): [0, 0, -1, 1, 1, -1], ("bfill", False, True): [0, 0, -1, 1, 1, -1], ("bfill", False, False): [0, 0, -1, 1, 1, -1], } ridx = expected_rows.get((method, dropna, has_nan_group)) expected = df_without_nan_rows.reindex(ridx).reset_index(drop=True) # columns are a 'take' on df.columns, which are object dtype expected.columns = expected.columns.astype(object) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("min_count, value", [(2, np.nan), (-1, 1.0)]) @pytest.mark.parametrize("func", ["first", "last", "max", "min"]) def test_min_count(func, min_count, value): # GH#37821 df = DataFrame({"a": [1] * 3, "b": [1, np.nan, np.nan], "c": [np.nan] * 3}) result = getattr(df.groupby("a"), func)(min_count=min_count) expected = DataFrame({"b": [value], "c": [np.nan]}, index=Index([1], name="a")) tm.assert_frame_equal(result, expected) def test_indices_with_missing(): # GH 9304 df = DataFrame({"a": [1, 1, np.nan], "b": [2, 3, 4], "c": [5, 6, 7]}) g = df.groupby(["a", "b"]) result = g.indices expected = {(1.0, 2): np.array([0]), (1.0, 3): np.array([1])} assert result == expected