import re import numpy as np import pytest from pandas._libs import index as libindex import pandas as pd @pytest.fixture( params=[ (libindex.Int64Engine, np.int64), (libindex.Int32Engine, np.int32), (libindex.Int16Engine, np.int16), (libindex.Int8Engine, np.int8), (libindex.UInt64Engine, np.uint64), (libindex.UInt32Engine, np.uint32), (libindex.UInt16Engine, np.uint16), (libindex.UInt8Engine, np.uint8), (libindex.Float64Engine, np.float64), (libindex.Float32Engine, np.float32), ], ids=lambda x: x[0].__name__, ) def numeric_indexing_engine_type_and_dtype(request): return request.param class TestDatetimeEngine: @pytest.mark.parametrize( "scalar", [ pd.Timedelta(pd.Timestamp("2016-01-01").asm8.view("m8[ns]")), pd.Timestamp("2016-01-01")._value, pd.Timestamp("2016-01-01").to_pydatetime(), pd.Timestamp("2016-01-01").to_datetime64(), ], ) def test_not_contains_requires_timestamp(self, scalar): dti1 = pd.date_range("2016-01-01", periods=3) dti2 = dti1.insert(1, pd.NaT) # non-monotonic dti3 = dti1.insert(3, dti1[0]) # non-unique dti4 = pd.date_range("2016-01-01", freq="ns", periods=2_000_000) dti5 = dti4.insert(0, dti4[0]) # over size threshold, not unique msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))]) for dti in [dti1, dti2, dti3, dti4, dti5]: with pytest.raises(TypeError, match=msg): scalar in dti._engine with pytest.raises(KeyError, match=msg): dti._engine.get_loc(scalar) class TestTimedeltaEngine: @pytest.mark.parametrize( "scalar", [ pd.Timestamp(pd.Timedelta(days=42).asm8.view("datetime64[ns]")), pd.Timedelta(days=42)._value, pd.Timedelta(days=42).to_pytimedelta(), pd.Timedelta(days=42).to_timedelta64(), ], ) def test_not_contains_requires_timedelta(self, scalar): tdi1 = pd.timedelta_range("42 days", freq="9h", periods=1234) tdi2 = tdi1.insert(1, pd.NaT) # non-monotonic tdi3 = tdi1.insert(3, tdi1[0]) # non-unique tdi4 = pd.timedelta_range("42 days", freq="ns", periods=2_000_000) tdi5 = tdi4.insert(0, tdi4[0]) # over size threshold, not unique msg = "|".join([re.escape(str(scalar)), re.escape(repr(scalar))]) for tdi in [tdi1, tdi2, tdi3, tdi4, tdi5]: with pytest.raises(TypeError, match=msg): scalar in tdi._engine with pytest.raises(KeyError, match=msg): tdi._engine.get_loc(scalar) class TestNumericEngine: def test_is_monotonic(self, numeric_indexing_engine_type_and_dtype): engine_type, dtype = numeric_indexing_engine_type_and_dtype num = 1000 arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype) # monotonic increasing engine = engine_type(arr) assert engine.is_monotonic_increasing is True assert engine.is_monotonic_decreasing is False # monotonic decreasing engine = engine_type(arr[::-1]) assert engine.is_monotonic_increasing is False assert engine.is_monotonic_decreasing is True # neither monotonic increasing or decreasing arr = np.array([1] * num + [2] * num + [1] * num, dtype=dtype) engine = engine_type(arr[::-1]) assert engine.is_monotonic_increasing is False assert engine.is_monotonic_decreasing is False def test_is_unique(self, numeric_indexing_engine_type_and_dtype): engine_type, dtype = numeric_indexing_engine_type_and_dtype # unique arr = np.array([1, 3, 2], dtype=dtype) engine = engine_type(arr) assert engine.is_unique is True # not unique arr = np.array([1, 2, 1], dtype=dtype) engine = engine_type(arr) assert engine.is_unique is False def test_get_loc(self, numeric_indexing_engine_type_and_dtype): engine_type, dtype = numeric_indexing_engine_type_and_dtype # unique arr = np.array([1, 2, 3], dtype=dtype) engine = engine_type(arr) assert engine.get_loc(2) == 1 # monotonic num = 1000 arr = np.array([1] * num + [2] * num + [3] * num, dtype=dtype) engine = engine_type(arr) assert engine.get_loc(2) == slice(1000, 2000) # not monotonic arr = np.array([1, 2, 3] * num, dtype=dtype) engine = engine_type(arr) expected = np.array([False, True, False] * num, dtype=bool) result = engine.get_loc(2) assert (result == expected).all() class TestObjectEngine: engine_type = libindex.ObjectEngine dtype = np.object_ values = list("abc") def test_is_monotonic(self): num = 1000 arr = np.array(["a"] * num + ["a"] * num + ["c"] * num, dtype=self.dtype) # monotonic increasing engine = self.engine_type(arr) assert engine.is_monotonic_increasing is True assert engine.is_monotonic_decreasing is False # monotonic decreasing engine = self.engine_type(arr[::-1]) assert engine.is_monotonic_increasing is False assert engine.is_monotonic_decreasing is True # neither monotonic increasing or decreasing arr = np.array(["a"] * num + ["b"] * num + ["a"] * num, dtype=self.dtype) engine = self.engine_type(arr[::-1]) assert engine.is_monotonic_increasing is False assert engine.is_monotonic_decreasing is False def test_is_unique(self): # unique arr = np.array(self.values, dtype=self.dtype) engine = self.engine_type(arr) assert engine.is_unique is True # not unique arr = np.array(["a", "b", "a"], dtype=self.dtype) engine = self.engine_type(arr) assert engine.is_unique is False def test_get_loc(self): # unique arr = np.array(self.values, dtype=self.dtype) engine = self.engine_type(arr) assert engine.get_loc("b") == 1 # monotonic num = 1000 arr = np.array(["a"] * num + ["b"] * num + ["c"] * num, dtype=self.dtype) engine = self.engine_type(arr) assert engine.get_loc("b") == slice(1000, 2000) # not monotonic arr = np.array(self.values * num, dtype=self.dtype) engine = self.engine_type(arr) expected = np.array([False, True, False] * num, dtype=bool) result = engine.get_loc("b") assert (result == expected).all()