""" manage legacy pickle tests How to add pickle tests: 1. Install pandas version intended to output the pickle. 2. Execute "generate_legacy_storage_files.py" to create the pickle. $ python generate_legacy_storage_files.py pickle 3. Move the created pickle to "data/legacy_pickle/" directory. """ from __future__ import annotations from array import array import bz2 import datetime import functools from functools import partial import gzip import io import os from pathlib import Path import pickle import shutil import tarfile from typing import Any import uuid import zipfile import numpy as np import pytest from pandas.compat import ( get_lzma_file, is_platform_little_endian, ) from pandas.compat._optional import import_optional_dependency from pandas.compat.compressors import flatten_buffer import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, Series, period_range, ) import pandas._testing as tm from pandas.tests.io.generate_legacy_storage_files import create_pickle_data import pandas.io.common as icom from pandas.tseries.offsets import ( Day, MonthEnd, ) # --------------------- # comparison functions # --------------------- def compare_element(result, expected, typ): if isinstance(expected, Index): tm.assert_index_equal(expected, result) return if typ.startswith("sp_"): tm.assert_equal(result, expected) elif typ == "timestamp": if expected is pd.NaT: assert result is pd.NaT else: assert result == expected else: comparator = getattr(tm, f"assert_{typ}_equal", tm.assert_almost_equal) comparator(result, expected) # --------------------- # tests # --------------------- @pytest.mark.parametrize( "data", [ b"123", b"123456", bytearray(b"123"), memoryview(b"123"), pickle.PickleBuffer(b"123"), array("I", [1, 2, 3]), memoryview(b"123456").cast("B", (3, 2)), memoryview(b"123456").cast("B", (3, 2))[::2], np.arange(12).reshape((3, 4), order="C"), np.arange(12).reshape((3, 4), order="F"), np.arange(12).reshape((3, 4), order="C")[:, ::2], ], ) def test_flatten_buffer(data): result = flatten_buffer(data) expected = memoryview(data).tobytes("A") assert result == expected if isinstance(data, (bytes, bytearray)): assert result is data elif isinstance(result, memoryview): assert result.ndim == 1 assert result.format == "B" assert result.contiguous assert result.shape == (result.nbytes,) def test_pickles(datapath): if not is_platform_little_endian(): pytest.skip("known failure on non-little endian") # For loop for compat with --strict-data-files for legacy_pickle in Path(__file__).parent.glob("data/legacy_pickle/*/*.p*kl*"): legacy_pickle = datapath(legacy_pickle) data = pd.read_pickle(legacy_pickle) for typ, dv in data.items(): for dt, result in dv.items(): expected = data[typ][dt] if typ == "series" and dt == "ts": # GH 7748 tm.assert_series_equal(result, expected) assert result.index.freq == expected.index.freq assert not result.index.freq.normalize tm.assert_series_equal(result > 0, expected > 0) # GH 9291 freq = result.index.freq assert freq + Day(1) == Day(2) res = freq + pd.Timedelta(hours=1) assert isinstance(res, pd.Timedelta) assert res == pd.Timedelta(days=1, hours=1) res = freq + pd.Timedelta(nanoseconds=1) assert isinstance(res, pd.Timedelta) assert res == pd.Timedelta(days=1, nanoseconds=1) elif typ == "index" and dt == "period": tm.assert_index_equal(result, expected) assert isinstance(result.freq, MonthEnd) assert result.freq == MonthEnd() assert result.freqstr == "M" tm.assert_index_equal(result.shift(2), expected.shift(2)) elif typ == "series" and dt in ("dt_tz", "cat"): tm.assert_series_equal(result, expected) elif typ == "frame" and dt in ( "dt_mixed_tzs", "cat_onecol", "cat_and_float", ): tm.assert_frame_equal(result, expected) else: compare_element(result, expected, typ) def python_pickler(obj, path): with open(path, "wb") as fh: pickle.dump(obj, fh, protocol=-1) def python_unpickler(path): with open(path, "rb") as fh: fh.seek(0) return pickle.load(fh) def flatten(data: dict) -> list[tuple[str, Any]]: """Flatten create_pickle_data""" return [ (typ, example) for typ, examples in data.items() for example in examples.values() ] @pytest.mark.parametrize( "pickle_writer", [ pytest.param(python_pickler, id="python"), pytest.param(pd.to_pickle, id="pandas_proto_default"), pytest.param( functools.partial(pd.to_pickle, protocol=pickle.HIGHEST_PROTOCOL), id="pandas_proto_highest", ), pytest.param(functools.partial(pd.to_pickle, protocol=4), id="pandas_proto_4"), pytest.param( functools.partial(pd.to_pickle, protocol=5), id="pandas_proto_5", ), ], ) @pytest.mark.parametrize("writer", [pd.to_pickle, python_pickler]) @pytest.mark.parametrize("typ, expected", flatten(create_pickle_data())) def test_round_trip_current(typ, expected, pickle_writer, writer): with tm.ensure_clean() as path: # test writing with each pickler pickle_writer(expected, path) # test reading with each unpickler result = pd.read_pickle(path) compare_element(result, expected, typ) result = python_unpickler(path) compare_element(result, expected, typ) # and the same for file objects (GH 35679) with open(path, mode="wb") as handle: writer(expected, path) handle.seek(0) # shouldn't close file handle with open(path, mode="rb") as handle: result = pd.read_pickle(handle) handle.seek(0) # shouldn't close file handle compare_element(result, expected, typ) def test_pickle_path_pathlib(): df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) result = tm.round_trip_pathlib(df.to_pickle, pd.read_pickle) tm.assert_frame_equal(df, result) def test_pickle_path_localpath(): df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) result = tm.round_trip_localpath(df.to_pickle, pd.read_pickle) tm.assert_frame_equal(df, result) # --------------------- # test pickle compression # --------------------- @pytest.fixture def get_random_path(): return f"__{uuid.uuid4()}__.pickle" class TestCompression: _extension_to_compression = icom.extension_to_compression def compress_file(self, src_path, dest_path, compression): if compression is None: shutil.copyfile(src_path, dest_path) return if compression == "gzip": f = gzip.open(dest_path, "w") elif compression == "bz2": f = bz2.BZ2File(dest_path, "w") elif compression == "zip": with zipfile.ZipFile(dest_path, "w", compression=zipfile.ZIP_DEFLATED) as f: f.write(src_path, os.path.basename(src_path)) elif compression == "tar": with open(src_path, "rb") as fh: with tarfile.open(dest_path, mode="w") as tar: tarinfo = tar.gettarinfo(src_path, os.path.basename(src_path)) tar.addfile(tarinfo, fh) elif compression == "xz": f = get_lzma_file()(dest_path, "w") elif compression == "zstd": f = import_optional_dependency("zstandard").open(dest_path, "wb") else: msg = f"Unrecognized compression type: {compression}" raise ValueError(msg) if compression not in ["zip", "tar"]: with open(src_path, "rb") as fh: with f: f.write(fh.read()) def test_write_explicit(self, compression, get_random_path): base = get_random_path path1 = base + ".compressed" path2 = base + ".raw" with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2: df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) # write to compressed file df.to_pickle(p1, compression=compression) # decompress with tm.decompress_file(p1, compression=compression) as f: with open(p2, "wb") as fh: fh.write(f.read()) # read decompressed file df2 = pd.read_pickle(p2, compression=None) tm.assert_frame_equal(df, df2) @pytest.mark.parametrize("compression", ["", "None", "bad", "7z"]) def test_write_explicit_bad(self, compression, get_random_path): with pytest.raises(ValueError, match="Unrecognized compression type"): with tm.ensure_clean(get_random_path) as path: df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) df.to_pickle(path, compression=compression) def test_write_infer(self, compression_ext, get_random_path): base = get_random_path path1 = base + compression_ext path2 = base + ".raw" compression = self._extension_to_compression.get(compression_ext.lower()) with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2: df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) # write to compressed file by inferred compression method df.to_pickle(p1) # decompress with tm.decompress_file(p1, compression=compression) as f: with open(p2, "wb") as fh: fh.write(f.read()) # read decompressed file df2 = pd.read_pickle(p2, compression=None) tm.assert_frame_equal(df, df2) def test_read_explicit(self, compression, get_random_path): base = get_random_path path1 = base + ".raw" path2 = base + ".compressed" with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2: df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) # write to uncompressed file df.to_pickle(p1, compression=None) # compress self.compress_file(p1, p2, compression=compression) # read compressed file df2 = pd.read_pickle(p2, compression=compression) tm.assert_frame_equal(df, df2) def test_read_infer(self, compression_ext, get_random_path): base = get_random_path path1 = base + ".raw" path2 = base + compression_ext compression = self._extension_to_compression.get(compression_ext.lower()) with tm.ensure_clean(path1) as p1, tm.ensure_clean(path2) as p2: df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) # write to uncompressed file df.to_pickle(p1, compression=None) # compress self.compress_file(p1, p2, compression=compression) # read compressed file by inferred compression method df2 = pd.read_pickle(p2) tm.assert_frame_equal(df, df2) # --------------------- # test pickle compression # --------------------- class TestProtocol: @pytest.mark.parametrize("protocol", [-1, 0, 1, 2]) def test_read(self, protocol, get_random_path): with tm.ensure_clean(get_random_path) as path: df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) df.to_pickle(path, protocol=protocol) df2 = pd.read_pickle(path) tm.assert_frame_equal(df, df2) @pytest.mark.parametrize( ["pickle_file", "excols"], [ ("test_py27.pkl", Index(["a", "b", "c"])), ( "test_mi_py27.pkl", pd.MultiIndex.from_arrays([["a", "b", "c"], ["A", "B", "C"]]), ), ], ) def test_unicode_decode_error(datapath, pickle_file, excols): # pickle file written with py27, should be readable without raising # UnicodeDecodeError, see GH#28645 and GH#31988 path = datapath("io", "data", "pickle", pickle_file) df = pd.read_pickle(path) # just test the columns are correct since the values are random tm.assert_index_equal(df.columns, excols) # --------------------- # tests for buffer I/O # --------------------- def test_pickle_buffer_roundtrip(): with tm.ensure_clean() as path: df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) with open(path, "wb") as fh: df.to_pickle(fh) with open(path, "rb") as fh: result = pd.read_pickle(fh) tm.assert_frame_equal(df, result) # --------------------- # tests for URL I/O # --------------------- @pytest.mark.parametrize( "mockurl", ["http://url.com", "ftp://test.com", "http://gzip.com"] ) def test_pickle_generalurl_read(monkeypatch, mockurl): def python_pickler(obj, path): with open(path, "wb") as fh: pickle.dump(obj, fh, protocol=-1) class MockReadResponse: def __init__(self, path) -> None: self.file = open(path, "rb") if "gzip" in path: self.headers = {"Content-Encoding": "gzip"} else: self.headers = {"Content-Encoding": ""} def __enter__(self): return self def __exit__(self, *args): self.close() def read(self): return self.file.read() def close(self): return self.file.close() with tm.ensure_clean() as path: def mock_urlopen_read(*args, **kwargs): return MockReadResponse(path) df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) python_pickler(df, path) monkeypatch.setattr("urllib.request.urlopen", mock_urlopen_read) result = pd.read_pickle(mockurl) tm.assert_frame_equal(df, result) def test_pickle_fsspec_roundtrip(): pytest.importorskip("fsspec") with tm.ensure_clean(): mockurl = "memory://mockfile" df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) df.to_pickle(mockurl) result = pd.read_pickle(mockurl) tm.assert_frame_equal(df, result) class MyTz(datetime.tzinfo): def __init__(self) -> None: pass def test_read_pickle_with_subclass(): # GH 12163 expected = Series(dtype=object), MyTz() result = tm.round_trip_pickle(expected) tm.assert_series_equal(result[0], expected[0]) assert isinstance(result[1], MyTz) def test_pickle_binary_object_compression(compression): """ Read/write from binary file-objects w/wo compression. GH 26237, GH 29054, and GH 29570 """ df = DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), ) # reference for compression with tm.ensure_clean() as path: df.to_pickle(path, compression=compression) reference = Path(path).read_bytes() # write buffer = io.BytesIO() df.to_pickle(buffer, compression=compression) buffer.seek(0) # gzip and zip safe the filename: cannot compare the compressed content assert buffer.getvalue() == reference or compression in ("gzip", "zip", "tar") # read read_df = pd.read_pickle(buffer, compression=compression) buffer.seek(0) tm.assert_frame_equal(df, read_df) def test_pickle_dataframe_with_multilevel_index( multiindex_year_month_day_dataframe_random_data, multiindex_dataframe_random_data, ): ymd = multiindex_year_month_day_dataframe_random_data frame = multiindex_dataframe_random_data def _test_roundtrip(frame): unpickled = tm.round_trip_pickle(frame) tm.assert_frame_equal(frame, unpickled) _test_roundtrip(frame) _test_roundtrip(frame.T) _test_roundtrip(ymd) _test_roundtrip(ymd.T) def test_pickle_timeseries_periodindex(): # GH#2891 prng = period_range("1/1/2011", "1/1/2012", freq="M") ts = Series(np.random.default_rng(2).standard_normal(len(prng)), prng) new_ts = tm.round_trip_pickle(ts) assert new_ts.index.freqstr == "M" @pytest.mark.parametrize( "name", [777, 777.0, "name", datetime.datetime(2001, 11, 11), (1, 2)] ) def test_pickle_preserve_name(name): unpickled = tm.round_trip_pickle(Series(np.arange(10, dtype=np.float64), name=name)) assert unpickled.name == name def test_pickle_datetimes(datetime_series): unp_ts = tm.round_trip_pickle(datetime_series) tm.assert_series_equal(unp_ts, datetime_series) def test_pickle_strings(string_series): unp_series = tm.round_trip_pickle(string_series) tm.assert_series_equal(unp_series, string_series) @td.skip_array_manager_invalid_test def test_pickle_preserves_block_ndim(): # GH#37631 ser = Series(list("abc")).astype("category").iloc[[0]] res = tm.round_trip_pickle(ser) assert res._mgr.blocks[0].ndim == 1 assert res._mgr.blocks[0].shape == (1,) # GH#37631 OP issue was about indexing, underlying problem was pickle tm.assert_series_equal(res[[True]], ser) @pytest.mark.parametrize("protocol", [pickle.DEFAULT_PROTOCOL, pickle.HIGHEST_PROTOCOL]) def test_pickle_big_dataframe_compression(protocol, compression): # GH#39002 df = DataFrame(range(100000)) result = tm.round_trip_pathlib( partial(df.to_pickle, protocol=protocol, compression=compression), partial(pd.read_pickle, compression=compression), ) tm.assert_frame_equal(df, result) def test_pickle_frame_v124_unpickle_130(datapath): # GH#42345 DataFrame created in 1.2.x, unpickle in 1.3.x path = datapath( Path(__file__).parent, "data", "legacy_pickle", "1.2.4", "empty_frame_v1_2_4-GH#42345.pkl", ) with open(path, "rb") as fd: df = pickle.load(fd) expected = DataFrame(index=[], columns=[]) tm.assert_frame_equal(df, expected) def test_pickle_pos_args_deprecation(): # GH-54229 df = DataFrame({"a": [1, 2, 3]}) msg = ( r"Starting with pandas version 3.0 all arguments of to_pickle except for the " r"argument 'path' will be keyword-only." ) with tm.assert_produces_warning(FutureWarning, match=msg): buffer = io.BytesIO() df.to_pickle(buffer, "infer")