import datetime from pathlib import Path import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.util.version import Version pyreadstat = pytest.importorskip("pyreadstat") # TODO(CoW) - detection of chained assignment in cython # https://github.com/pandas-dev/pandas/issues/51315 @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError") @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning") @pytest.mark.parametrize("path_klass", [lambda p: p, Path]) def test_spss_labelled_num(path_klass, datapath): # test file from the Haven project (https://haven.tidyverse.org/) # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav")) df = pd.read_spss(fname, convert_categoricals=True) expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0]) expected["VAR00002"] = pd.Categorical(expected["VAR00002"]) tm.assert_frame_equal(df, expected) df = pd.read_spss(fname, convert_categoricals=False) expected = pd.DataFrame({"VAR00002": 1.0}, index=[0]) tm.assert_frame_equal(df, expected) @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError") @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning") def test_spss_labelled_num_na(datapath): # test file from the Haven project (https://haven.tidyverse.org/) # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT fname = datapath("io", "data", "spss", "labelled-num-na.sav") df = pd.read_spss(fname, convert_categoricals=True) expected = pd.DataFrame({"VAR00002": ["This is one", None]}) expected["VAR00002"] = pd.Categorical(expected["VAR00002"]) tm.assert_frame_equal(df, expected) df = pd.read_spss(fname, convert_categoricals=False) expected = pd.DataFrame({"VAR00002": [1.0, np.nan]}) tm.assert_frame_equal(df, expected) @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError") @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning") def test_spss_labelled_str(datapath): # test file from the Haven project (https://haven.tidyverse.org/) # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT fname = datapath("io", "data", "spss", "labelled-str.sav") df = pd.read_spss(fname, convert_categoricals=True) expected = pd.DataFrame({"gender": ["Male", "Female"]}) expected["gender"] = pd.Categorical(expected["gender"]) tm.assert_frame_equal(df, expected) df = pd.read_spss(fname, convert_categoricals=False) expected = pd.DataFrame({"gender": ["M", "F"]}) tm.assert_frame_equal(df, expected) @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError") @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning") def test_spss_umlauts(datapath): # test file from the Haven project (https://haven.tidyverse.org/) # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT fname = datapath("io", "data", "spss", "umlauts.sav") df = pd.read_spss(fname, convert_categoricals=True) expected = pd.DataFrame( {"var1": ["the ä umlaut", "the ü umlaut", "the ä umlaut", "the ö umlaut"]} ) expected["var1"] = pd.Categorical(expected["var1"]) tm.assert_frame_equal(df, expected) df = pd.read_spss(fname, convert_categoricals=False) expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}) tm.assert_frame_equal(df, expected) def test_spss_usecols(datapath): # usecols must be list-like fname = datapath("io", "data", "spss", "labelled-num.sav") with pytest.raises(TypeError, match="usecols must be list-like."): pd.read_spss(fname, usecols="VAR00002") def test_spss_umlauts_dtype_backend(datapath, dtype_backend): # test file from the Haven project (https://haven.tidyverse.org/) # Licence at LICENSES/HAVEN_LICENSE, LICENSES/HAVEN_MIT fname = datapath("io", "data", "spss", "umlauts.sav") df = pd.read_spss(fname, convert_categoricals=False, dtype_backend=dtype_backend) expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}, dtype="Int64") if dtype_backend == "pyarrow": pa = pytest.importorskip("pyarrow") from pandas.arrays import ArrowExtensionArray expected = pd.DataFrame( { col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True)) for col in expected.columns } ) tm.assert_frame_equal(df, expected) def test_invalid_dtype_backend(): msg = ( "dtype_backend numpy is invalid, only 'numpy_nullable' and " "'pyarrow' are allowed." ) with pytest.raises(ValueError, match=msg): pd.read_spss("test", dtype_backend="numpy") @pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError") @pytest.mark.filterwarnings("ignore:ChainedAssignmentError:FutureWarning") def test_spss_metadata(datapath): # GH 54264 fname = datapath("io", "data", "spss", "labelled-num.sav") df = pd.read_spss(fname) metadata = { "column_names": ["VAR00002"], "column_labels": [None], "column_names_to_labels": {"VAR00002": None}, "file_encoding": "UTF-8", "number_columns": 1, "number_rows": 1, "variable_value_labels": {"VAR00002": {1.0: "This is one"}}, "value_labels": {"labels0": {1.0: "This is one"}}, "variable_to_label": {"VAR00002": "labels0"}, "notes": [], "original_variable_types": {"VAR00002": "F8.0"}, "readstat_variable_types": {"VAR00002": "double"}, "table_name": None, "missing_ranges": {}, "missing_user_values": {}, "variable_storage_width": {"VAR00002": 8}, "variable_display_width": {"VAR00002": 8}, "variable_alignment": {"VAR00002": "unknown"}, "variable_measure": {"VAR00002": "unknown"}, "file_label": None, "file_format": "sav/zsav", } if Version(pyreadstat.__version__) >= Version("1.2.4"): metadata.update( { "creation_time": datetime.datetime(2015, 2, 6, 14, 33, 36), "modification_time": datetime.datetime(2015, 2, 6, 14, 33, 36), } ) assert df.attrs == metadata