from datetime import ( date, datetime, ) import subprocess import sys import numpy as np import pytest import pandas._config.config as cf from pandas._libs.tslibs import to_offset from pandas import ( Index, Period, PeriodIndex, Series, Timestamp, arrays, date_range, ) import pandas._testing as tm from pandas.plotting import ( deregister_matplotlib_converters, register_matplotlib_converters, ) from pandas.tseries.offsets import ( Day, Micro, Milli, Second, ) try: from pandas.plotting._matplotlib import converter except ImportError: # try / except, rather than skip, to avoid internal refactoring # causing an improper skip pass pytest.importorskip("matplotlib.pyplot") dates = pytest.importorskip("matplotlib.dates") @pytest.mark.single_cpu def test_registry_mpl_resets(): # Check that Matplotlib converters are properly reset (see issue #27481) code = ( "import matplotlib.units as units; " "import matplotlib.dates as mdates; " "n_conv = len(units.registry); " "import pandas as pd; " "pd.plotting.register_matplotlib_converters(); " "pd.plotting.deregister_matplotlib_converters(); " "assert len(units.registry) == n_conv" ) call = [sys.executable, "-c", code] subprocess.check_output(call) def test_timtetonum_accepts_unicode(): assert converter.time2num("00:01") == converter.time2num("00:01") class TestRegistration: @pytest.mark.single_cpu def test_dont_register_by_default(self): # Run in subprocess to ensure a clean state code = ( "import matplotlib.units; " "import pandas as pd; " "units = dict(matplotlib.units.registry); " "assert pd.Timestamp not in units" ) call = [sys.executable, "-c", code] assert subprocess.check_call(call) == 0 def test_registering_no_warning(self): plt = pytest.importorskip("matplotlib.pyplot") s = Series(range(12), index=date_range("2017", periods=12)) _, ax = plt.subplots() # Set to the "warn" state, in case this isn't the first test run register_matplotlib_converters() ax.plot(s.index, s.values) plt.close() def test_pandas_plots_register(self): plt = pytest.importorskip("matplotlib.pyplot") s = Series(range(12), index=date_range("2017", periods=12)) # Set to the "warn" state, in case this isn't the first test run with tm.assert_produces_warning(None) as w: s.plot() try: assert len(w) == 0 finally: plt.close() def test_matplotlib_formatters(self): units = pytest.importorskip("matplotlib.units") # Can't make any assertion about the start state. # We we check that toggling converters off removes it, and toggling it # on restores it. with cf.option_context("plotting.matplotlib.register_converters", True): with cf.option_context("plotting.matplotlib.register_converters", False): assert Timestamp not in units.registry assert Timestamp in units.registry def test_option_no_warning(self): pytest.importorskip("matplotlib.pyplot") ctx = cf.option_context("plotting.matplotlib.register_converters", False) plt = pytest.importorskip("matplotlib.pyplot") s = Series(range(12), index=date_range("2017", periods=12)) _, ax = plt.subplots() # Test without registering first, no warning with ctx: ax.plot(s.index, s.values) # Now test with registering register_matplotlib_converters() with ctx: ax.plot(s.index, s.values) plt.close() def test_registry_resets(self): units = pytest.importorskip("matplotlib.units") dates = pytest.importorskip("matplotlib.dates") # make a copy, to reset to original = dict(units.registry) try: # get to a known state units.registry.clear() date_converter = dates.DateConverter() units.registry[datetime] = date_converter units.registry[date] = date_converter register_matplotlib_converters() assert units.registry[date] is not date_converter deregister_matplotlib_converters() assert units.registry[date] is date_converter finally: # restore original stater units.registry.clear() for k, v in original.items(): units.registry[k] = v class TestDateTimeConverter: @pytest.fixture def dtc(self): return converter.DatetimeConverter() def test_convert_accepts_unicode(self, dtc): r1 = dtc.convert("2000-01-01 12:22", None, None) r2 = dtc.convert("2000-01-01 12:22", None, None) assert r1 == r2, "DatetimeConverter.convert should accept unicode" def test_conversion(self, dtc): rs = dtc.convert(["2012-1-1"], None, None)[0] xp = dates.date2num(datetime(2012, 1, 1)) assert rs == xp rs = dtc.convert("2012-1-1", None, None) assert rs == xp rs = dtc.convert(date(2012, 1, 1), None, None) assert rs == xp rs = dtc.convert("2012-1-1", None, None) assert rs == xp rs = dtc.convert(Timestamp("2012-1-1"), None, None) assert rs == xp # also testing datetime64 dtype (GH8614) rs = dtc.convert("2012-01-01", None, None) assert rs == xp rs = dtc.convert("2012-01-01 00:00:00+0000", None, None) assert rs == xp rs = dtc.convert( np.array(["2012-01-01 00:00:00+0000", "2012-01-02 00:00:00+0000"]), None, None, ) assert rs[0] == xp # we have a tz-aware date (constructed to that when we turn to utc it # is the same as our sample) ts = Timestamp("2012-01-01").tz_localize("UTC").tz_convert("US/Eastern") rs = dtc.convert(ts, None, None) assert rs == xp rs = dtc.convert(ts.to_pydatetime(), None, None) assert rs == xp rs = dtc.convert(Index([ts - Day(1), ts]), None, None) assert rs[1] == xp rs = dtc.convert(Index([ts - Day(1), ts]).to_pydatetime(), None, None) assert rs[1] == xp def test_conversion_float(self, dtc): rtol = 0.5 * 10**-9 rs = dtc.convert(Timestamp("2012-1-1 01:02:03", tz="UTC"), None, None) xp = converter.mdates.date2num(Timestamp("2012-1-1 01:02:03", tz="UTC")) tm.assert_almost_equal(rs, xp, rtol=rtol) rs = dtc.convert( Timestamp("2012-1-1 09:02:03", tz="Asia/Hong_Kong"), None, None ) tm.assert_almost_equal(rs, xp, rtol=rtol) rs = dtc.convert(datetime(2012, 1, 1, 1, 2, 3), None, None) tm.assert_almost_equal(rs, xp, rtol=rtol) @pytest.mark.parametrize( "values", [ [date(1677, 1, 1), date(1677, 1, 2)], [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)], ], ) def test_conversion_outofbounds_datetime(self, dtc, values): # 2579 rs = dtc.convert(values, None, None) xp = converter.mdates.date2num(values) tm.assert_numpy_array_equal(rs, xp) rs = dtc.convert(values[0], None, None) xp = converter.mdates.date2num(values[0]) assert rs == xp @pytest.mark.parametrize( "time,format_expected", [ (0, "00:00"), # time2num(datetime.time.min) (86399.999999, "23:59:59.999999"), # time2num(datetime.time.max) (90000, "01:00"), (3723, "01:02:03"), (39723.2, "11:02:03.200"), ], ) def test_time_formatter(self, time, format_expected): # issue 18478 result = converter.TimeFormatter(None)(time) assert result == format_expected @pytest.mark.parametrize("freq", ("B", "ms", "s")) def test_dateindex_conversion(self, freq, dtc): rtol = 10**-9 dateindex = date_range("2020-01-01", periods=10, freq=freq) rs = dtc.convert(dateindex, None, None) xp = converter.mdates.date2num(dateindex._mpl_repr()) tm.assert_almost_equal(rs, xp, rtol=rtol) @pytest.mark.parametrize("offset", [Second(), Milli(), Micro(50)]) def test_resolution(self, offset, dtc): # Matplotlib's time representation using floats cannot distinguish # intervals smaller than ~10 microsecond in the common range of years. ts1 = Timestamp("2012-1-1") ts2 = ts1 + offset val1 = dtc.convert(ts1, None, None) val2 = dtc.convert(ts2, None, None) if not val1 < val2: raise AssertionError(f"{val1} is not less than {val2}.") def test_convert_nested(self, dtc): inner = [Timestamp("2017-01-01"), Timestamp("2017-01-02")] data = [inner, inner] result = dtc.convert(data, None, None) expected = [dtc.convert(x, None, None) for x in data] assert (np.array(result) == expected).all() class TestPeriodConverter: @pytest.fixture def pc(self): return converter.PeriodConverter() @pytest.fixture def axis(self): class Axis: pass axis = Axis() axis.freq = "D" return axis def test_convert_accepts_unicode(self, pc, axis): r1 = pc.convert("2012-1-1", None, axis) r2 = pc.convert("2012-1-1", None, axis) assert r1 == r2 def test_conversion(self, pc, axis): rs = pc.convert(["2012-1-1"], None, axis)[0] xp = Period("2012-1-1").ordinal assert rs == xp rs = pc.convert("2012-1-1", None, axis) assert rs == xp rs = pc.convert([date(2012, 1, 1)], None, axis)[0] assert rs == xp rs = pc.convert(date(2012, 1, 1), None, axis) assert rs == xp rs = pc.convert([Timestamp("2012-1-1")], None, axis)[0] assert rs == xp rs = pc.convert(Timestamp("2012-1-1"), None, axis) assert rs == xp rs = pc.convert("2012-01-01", None, axis) assert rs == xp rs = pc.convert("2012-01-01 00:00:00+0000", None, axis) assert rs == xp rs = pc.convert( np.array( ["2012-01-01 00:00:00", "2012-01-02 00:00:00"], dtype="datetime64[ns]", ), None, axis, ) assert rs[0] == xp def test_integer_passthrough(self, pc, axis): # GH9012 rs = pc.convert([0, 1], None, axis) xp = [0, 1] assert rs == xp def test_convert_nested(self, pc, axis): data = ["2012-1-1", "2012-1-2"] r1 = pc.convert([data, data], None, axis) r2 = [pc.convert(data, None, axis) for _ in range(2)] assert r1 == r2 class TestTimeDeltaConverter: """Test timedelta converter""" @pytest.mark.parametrize( "x, decimal, format_expected", [ (0.0, 0, "00:00:00"), (3972320000000, 1, "01:06:12.3"), (713233432000000, 2, "8 days 06:07:13.43"), (32423432000000, 4, "09:00:23.4320"), ], ) def test_format_timedelta_ticks(self, x, decimal, format_expected): tdc = converter.TimeSeries_TimedeltaFormatter result = tdc.format_timedelta_ticks(x, pos=None, n_decimals=decimal) assert result == format_expected @pytest.mark.parametrize("view_interval", [(1, 2), (2, 1)]) def test_call_w_different_view_intervals(self, view_interval, monkeypatch): # previously broke on reversed xlmits; see GH37454 class mock_axis: def get_view_interval(self): return view_interval tdc = converter.TimeSeries_TimedeltaFormatter() monkeypatch.setattr(tdc, "axis", mock_axis()) tdc(0.0, 0) @pytest.mark.parametrize("year_span", [11.25, 30, 80, 150, 400, 800, 1500, 2500, 3500]) # The range is limited to 11.25 at the bottom by if statements in # the _quarterly_finder() function def test_quarterly_finder(year_span): vmin = -1000 vmax = vmin + year_span * 4 span = vmax - vmin + 1 if span < 45: pytest.skip("the quarterly finder is only invoked if the span is >= 45") nyears = span / 4 (min_anndef, maj_anndef) = converter._get_default_annual_spacing(nyears) result = converter._quarterly_finder(vmin, vmax, to_offset("QE")) quarters = PeriodIndex( arrays.PeriodArray(np.array([x[0] for x in result]), dtype="period[Q]") ) majors = np.array([x[1] for x in result]) minors = np.array([x[2] for x in result]) major_quarters = quarters[majors] minor_quarters = quarters[minors] check_major_years = major_quarters.year % maj_anndef == 0 check_minor_years = minor_quarters.year % min_anndef == 0 check_major_quarters = major_quarters.quarter == 1 check_minor_quarters = minor_quarters.quarter == 1 assert np.all(check_major_years) assert np.all(check_minor_years) assert np.all(check_major_quarters) assert np.all(check_minor_quarters)