import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, Series, concat, ) import pandas._testing as tm class TestDataFrameConcat: def test_concat_multiple_frames_dtypes(self): # GH#2759 df1 = DataFrame(data=np.ones((10, 2)), columns=["foo", "bar"], dtype=np.float64) df2 = DataFrame(data=np.ones((10, 2)), dtype=np.float32) results = concat((df1, df2), axis=1).dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("float32")] * 2, index=["foo", "bar", 0, 1], ) tm.assert_series_equal(results, expected) def test_concat_tuple_keys(self): # GH#14438 df1 = DataFrame(np.ones((2, 2)), columns=list("AB")) df2 = DataFrame(np.ones((3, 2)) * 2, columns=list("AB")) results = concat((df1, df2), keys=[("bee", "bah"), ("bee", "boo")]) expected = DataFrame( { "A": { ("bee", "bah", 0): 1.0, ("bee", "bah", 1): 1.0, ("bee", "boo", 0): 2.0, ("bee", "boo", 1): 2.0, ("bee", "boo", 2): 2.0, }, "B": { ("bee", "bah", 0): 1.0, ("bee", "bah", 1): 1.0, ("bee", "boo", 0): 2.0, ("bee", "boo", 1): 2.0, ("bee", "boo", 2): 2.0, }, } ) tm.assert_frame_equal(results, expected) def test_concat_named_keys(self): # GH#14252 df = DataFrame({"foo": [1, 2], "bar": [0.1, 0.2]}) index = Index(["a", "b"], name="baz") concatted_named_from_keys = concat([df, df], keys=index) expected_named = DataFrame( {"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]}, index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=["baz", None]), ) tm.assert_frame_equal(concatted_named_from_keys, expected_named) index_no_name = Index(["a", "b"], name=None) concatted_named_from_names = concat([df, df], keys=index_no_name, names=["baz"]) tm.assert_frame_equal(concatted_named_from_names, expected_named) concatted_unnamed = concat([df, df], keys=index_no_name) expected_unnamed = DataFrame( {"foo": [1, 2, 1, 2], "bar": [0.1, 0.2, 0.1, 0.2]}, index=pd.MultiIndex.from_product((["a", "b"], [0, 1]), names=[None, None]), ) tm.assert_frame_equal(concatted_unnamed, expected_unnamed) def test_concat_axis_parameter(self): # GH#14369 df1 = DataFrame({"A": [0.1, 0.2]}, index=range(2)) df2 = DataFrame({"A": [0.3, 0.4]}, index=range(2)) # Index/row/0 DataFrame expected_index = DataFrame({"A": [0.1, 0.2, 0.3, 0.4]}, index=[0, 1, 0, 1]) concatted_index = concat([df1, df2], axis="index") tm.assert_frame_equal(concatted_index, expected_index) concatted_row = concat([df1, df2], axis="rows") tm.assert_frame_equal(concatted_row, expected_index) concatted_0 = concat([df1, df2], axis=0) tm.assert_frame_equal(concatted_0, expected_index) # Columns/1 DataFrame expected_columns = DataFrame( [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=["A", "A"] ) concatted_columns = concat([df1, df2], axis="columns") tm.assert_frame_equal(concatted_columns, expected_columns) concatted_1 = concat([df1, df2], axis=1) tm.assert_frame_equal(concatted_1, expected_columns) series1 = Series([0.1, 0.2]) series2 = Series([0.3, 0.4]) # Index/row/0 Series expected_index_series = Series([0.1, 0.2, 0.3, 0.4], index=[0, 1, 0, 1]) concatted_index_series = concat([series1, series2], axis="index") tm.assert_series_equal(concatted_index_series, expected_index_series) concatted_row_series = concat([series1, series2], axis="rows") tm.assert_series_equal(concatted_row_series, expected_index_series) concatted_0_series = concat([series1, series2], axis=0) tm.assert_series_equal(concatted_0_series, expected_index_series) # Columns/1 Series expected_columns_series = DataFrame( [[0.1, 0.3], [0.2, 0.4]], index=[0, 1], columns=[0, 1] ) concatted_columns_series = concat([series1, series2], axis="columns") tm.assert_frame_equal(concatted_columns_series, expected_columns_series) concatted_1_series = concat([series1, series2], axis=1) tm.assert_frame_equal(concatted_1_series, expected_columns_series) # Testing ValueError with pytest.raises(ValueError, match="No axis named"): concat([series1, series2], axis="something") def test_concat_numerical_names(self): # GH#15262, GH#12223 df = DataFrame( {"col": range(9)}, dtype="int32", index=( pd.MultiIndex.from_product( [["A0", "A1", "A2"], ["B0", "B1", "B2"]], names=[1, 2] ) ), ) result = concat((df.iloc[:2, :], df.iloc[-2:, :])) expected = DataFrame( {"col": [0, 1, 7, 8]}, dtype="int32", index=pd.MultiIndex.from_tuples( [("A0", "B0"), ("A0", "B1"), ("A2", "B1"), ("A2", "B2")], names=[1, 2] ), ) tm.assert_frame_equal(result, expected) def test_concat_astype_dup_col(self): # GH#23049 df = DataFrame([{"a": "b"}]) df = concat([df, df], axis=1) result = df.astype("category") expected = DataFrame( np.array(["b", "b"]).reshape(1, 2), columns=["a", "a"] ).astype("category") tm.assert_frame_equal(result, expected) def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_bool_with_int(self): # GH#42092 we may want to change this to return object, but that # would need a deprecation df1 = DataFrame(Series([True, False, True, True], dtype="bool")) df2 = DataFrame(Series([1, 0, 1], dtype="int64")) result = concat([df1, df2]) expected = concat([df1.astype("int64"), df2]) tm.assert_frame_equal(result, expected) def test_concat_duplicates_in_index_with_keys(self): # GH#42651 index = [1, 1, 3] data = [1, 2, 3] df = DataFrame(data=data, index=index) result = concat([df], keys=["A"], names=["ID", "date"]) mi = pd.MultiIndex.from_product([["A"], index], names=["ID", "date"]) expected = DataFrame(data=data, index=mi) tm.assert_frame_equal(result, expected) tm.assert_index_equal(result.index.levels[1], Index([1, 3], name="date")) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("order", ["C", "F"]) @pytest.mark.parametrize("axis", [0, 1]) def test_concat_copies(self, axis, order, ignore_index, using_copy_on_write): # based on asv ConcatDataFrames df = DataFrame(np.zeros((10, 5), dtype=np.float32, order=order)) res = concat([df] * 5, axis=axis, ignore_index=ignore_index, copy=True) if not using_copy_on_write: for arr in res._iter_column_arrays(): for arr2 in df._iter_column_arrays(): assert not np.shares_memory(arr, arr2) def test_outer_sort_columns(self): # GH#47127 df1 = DataFrame({"A": [0], "B": [1], 0: 1}) df2 = DataFrame({"A": [100]}) result = concat([df1, df2], ignore_index=True, join="outer", sort=True) expected = DataFrame({0: [1.0, np.nan], "A": [0, 100], "B": [1.0, np.nan]}) tm.assert_frame_equal(result, expected) def test_inner_sort_columns(self): # GH#47127 df1 = DataFrame({"A": [0], "B": [1], 0: 1}) df2 = DataFrame({"A": [100], 0: 2}) result = concat([df1, df2], ignore_index=True, join="inner", sort=True) expected = DataFrame({0: [1, 2], "A": [0, 100]}) tm.assert_frame_equal(result, expected) def test_sort_columns_one_df(self): # GH#47127 df1 = DataFrame({"A": [100], 0: 2}) result = concat([df1], ignore_index=True, join="inner", sort=True) expected = DataFrame({0: [2], "A": [100]}) tm.assert_frame_equal(result, expected)