import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, Series, TimedeltaIndex, Timestamp, cut, date_range, interval_range, isna, qcut, timedelta_range, to_datetime, ) import pandas._testing as tm from pandas.api.types import CategoricalDtype import pandas.core.reshape.tile as tmod def test_simple(): data = np.ones(5, dtype="int64") result = cut(data, 4, labels=False) expected = np.array([1, 1, 1, 1, 1]) tm.assert_numpy_array_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("func", [list, np.array]) def test_bins(func): data = func([0.2, 1.4, 2.5, 6.2, 9.7, 2.1]) result, bins = cut(data, 3, retbins=True) intervals = IntervalIndex.from_breaks(bins.round(3)) intervals = intervals.take([0, 0, 0, 1, 2, 0]) expected = Categorical(intervals, ordered=True) tm.assert_categorical_equal(result, expected) tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7])) def test_right(): data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) result, bins = cut(data, 4, right=True, retbins=True) intervals = IntervalIndex.from_breaks(bins.round(3)) expected = Categorical(intervals, ordered=True) expected = expected.take([0, 0, 0, 2, 3, 0, 0]) tm.assert_categorical_equal(result, expected) tm.assert_almost_equal(bins, np.array([0.1905, 2.575, 4.95, 7.325, 9.7])) def test_no_right(): data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575]) result, bins = cut(data, 4, right=False, retbins=True) intervals = IntervalIndex.from_breaks(bins.round(3), closed="left") intervals = intervals.take([0, 0, 0, 2, 3, 0, 1]) expected = Categorical(intervals, ordered=True) tm.assert_categorical_equal(result, expected) tm.assert_almost_equal(bins, np.array([0.2, 2.575, 4.95, 7.325, 9.7095])) def test_bins_from_interval_index(): c = cut(range(5), 3) expected = c result = cut(range(5), bins=expected.categories) tm.assert_categorical_equal(result, expected) expected = Categorical.from_codes( np.append(c.codes, -1), categories=c.categories, ordered=True ) result = cut(range(6), bins=expected.categories) tm.assert_categorical_equal(result, expected) def test_bins_from_interval_index_doc_example(): # Make sure we preserve the bins. ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60]) c = cut(ages, bins=[0, 18, 35, 70]) expected = IntervalIndex.from_tuples([(0, 18), (18, 35), (35, 70)]) tm.assert_index_equal(c.categories, expected) result = cut([25, 20, 50], bins=c.categories) tm.assert_index_equal(result.categories, expected) tm.assert_numpy_array_equal(result.codes, np.array([1, 1, 2], dtype="int8")) def test_bins_not_overlapping_from_interval_index(): # see gh-23980 msg = "Overlapping IntervalIndex is not accepted" ii = IntervalIndex.from_tuples([(0, 10), (2, 12), (4, 14)]) with pytest.raises(ValueError, match=msg): cut([5, 6], bins=ii) def test_bins_not_monotonic(): msg = "bins must increase monotonically" data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] with pytest.raises(ValueError, match=msg): cut(data, [0.1, 1.5, 1, 10]) @pytest.mark.parametrize( "x, bins, expected", [ ( date_range("2017-12-31", periods=3), [Timestamp.min, Timestamp("2018-01-01"), Timestamp.max], IntervalIndex.from_tuples( [ (Timestamp.min, Timestamp("2018-01-01")), (Timestamp("2018-01-01"), Timestamp.max), ] ), ), ( [-1, 0, 1], np.array( [np.iinfo(np.int64).min, 0, np.iinfo(np.int64).max], dtype="int64" ), IntervalIndex.from_tuples( [(np.iinfo(np.int64).min, 0), (0, np.iinfo(np.int64).max)] ), ), ( [ np.timedelta64(-1, "ns"), np.timedelta64(0, "ns"), np.timedelta64(1, "ns"), ], np.array( [ np.timedelta64(-np.iinfo(np.int64).max, "ns"), np.timedelta64(0, "ns"), np.timedelta64(np.iinfo(np.int64).max, "ns"), ] ), IntervalIndex.from_tuples( [ ( np.timedelta64(-np.iinfo(np.int64).max, "ns"), np.timedelta64(0, "ns"), ), ( np.timedelta64(0, "ns"), np.timedelta64(np.iinfo(np.int64).max, "ns"), ), ] ), ), ], ) def test_bins_monotonic_not_overflowing(x, bins, expected): # GH 26045 result = cut(x, bins) tm.assert_index_equal(result.categories, expected) def test_wrong_num_labels(): msg = "Bin labels must be one fewer than the number of bin edges" data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1] with pytest.raises(ValueError, match=msg): cut(data, [0, 1, 10], labels=["foo", "bar", "baz"]) @pytest.mark.parametrize( "x,bins,msg", [ ([], 2, "Cannot cut empty array"), ([1, 2, 3], 0.5, "`bins` should be a positive integer"), ], ) def test_cut_corner(x, bins, msg): with pytest.raises(ValueError, match=msg): cut(x, bins) @pytest.mark.parametrize("arg", [2, np.eye(2), DataFrame(np.eye(2))]) @pytest.mark.parametrize("cut_func", [cut, qcut]) def test_cut_not_1d_arg(arg, cut_func): msg = "Input array must be 1 dimensional" with pytest.raises(ValueError, match=msg): cut_func(arg, 2) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3, 4, np.inf], [-np.inf, 0, 1, 2, 3, 4], [-np.inf, 0, 1, 2, 3, 4, np.inf], ], ) def test_int_bins_with_inf(data): # GH 24314 msg = "cannot specify integer `bins` when input data contains infinity" with pytest.raises(ValueError, match=msg): cut(data, bins=3) def test_cut_out_of_range_more(): # see gh-1511 name = "x" ser = Series([0, -1, 0, 1, -3], name=name) ind = cut(ser, [0, 1], labels=False) exp = Series([np.nan, np.nan, np.nan, 0, np.nan], name=name) tm.assert_series_equal(ind, exp) @pytest.mark.parametrize( "right,breaks,closed", [ (True, [-1e-3, 0.25, 0.5, 0.75, 1], "right"), (False, [0, 0.25, 0.5, 0.75, 1 + 1e-3], "left"), ], ) def test_labels(right, breaks, closed): arr = np.tile(np.arange(0, 1.01, 0.1), 4) result, bins = cut(arr, 4, retbins=True, right=right) ex_levels = IntervalIndex.from_breaks(breaks, closed=closed) tm.assert_index_equal(result.categories, ex_levels) def test_cut_pass_series_name_to_factor(): name = "foo" ser = Series(np.random.default_rng(2).standard_normal(100), name=name) factor = cut(ser, 4) assert factor.name == name def test_label_precision(): arr = np.arange(0, 0.73, 0.01) result = cut(arr, 4, precision=2) ex_levels = IntervalIndex.from_breaks([-0.00072, 0.18, 0.36, 0.54, 0.72]) tm.assert_index_equal(result.categories, ex_levels) @pytest.mark.parametrize("labels", [None, False]) def test_na_handling(labels): arr = np.arange(0, 0.75, 0.01) arr[::3] = np.nan result = cut(arr, 4, labels=labels) result = np.asarray(result) expected = np.where(isna(arr), np.nan, result) tm.assert_almost_equal(result, expected) def test_inf_handling(): data = np.arange(6) data_ser = Series(data, dtype="int64") bins = [-np.inf, 2, 4, np.inf] result = cut(data, bins) result_ser = cut(data_ser, bins) ex_uniques = IntervalIndex.from_breaks(bins) tm.assert_index_equal(result.categories, ex_uniques) assert result[5] == Interval(4, np.inf) assert result[0] == Interval(-np.inf, 2) assert result_ser[5] == Interval(4, np.inf) assert result_ser[0] == Interval(-np.inf, 2) def test_cut_out_of_bounds(): arr = np.random.default_rng(2).standard_normal(100) result = cut(arr, [-1, 0, 1]) mask = isna(result) ex_mask = (arr < -1) | (arr > 1) tm.assert_numpy_array_equal(mask, ex_mask) @pytest.mark.parametrize( "get_labels,get_expected", [ ( lambda labels: labels, lambda labels: Categorical( ["Medium"] + 4 * ["Small"] + ["Medium", "Large"], categories=labels, ordered=True, ), ), ( lambda labels: Categorical.from_codes([0, 1, 2], labels), lambda labels: Categorical.from_codes([1] + 4 * [0] + [1, 2], labels), ), ], ) def test_cut_pass_labels(get_labels, get_expected): bins = [0, 25, 50, 100] arr = [50, 5, 10, 15, 20, 30, 70] labels = ["Small", "Medium", "Large"] result = cut(arr, bins, labels=get_labels(labels)) tm.assert_categorical_equal(result, get_expected(labels)) def test_cut_pass_labels_compat(): # see gh-16459 arr = [50, 5, 10, 15, 20, 30, 70] labels = ["Good", "Medium", "Bad"] result = cut(arr, 3, labels=labels) exp = cut(arr, 3, labels=Categorical(labels, categories=labels, ordered=True)) tm.assert_categorical_equal(result, exp) @pytest.mark.parametrize("x", [np.arange(11.0), np.arange(11.0) / 1e10]) def test_round_frac_just_works(x): # It works. cut(x, 2) @pytest.mark.parametrize( "val,precision,expected", [ (-117.9998, 3, -118), (117.9998, 3, 118), (117.9998, 2, 118), (0.000123456, 2, 0.00012), ], ) def test_round_frac(val, precision, expected): # see gh-1979 result = tmod._round_frac(val, precision=precision) assert result == expected def test_cut_return_intervals(): ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8]) result = cut(ser, 3) exp_bins = np.linspace(0, 8, num=4).round(3) exp_bins[0] -= 0.008 expected = Series( IntervalIndex.from_breaks(exp_bins, closed="right").take( [0, 0, 0, 1, 1, 1, 2, 2, 2] ) ).astype(CategoricalDtype(ordered=True)) tm.assert_series_equal(result, expected) def test_series_ret_bins(): # see gh-8589 ser = Series(np.arange(4)) result, bins = cut(ser, 2, retbins=True) expected = Series( IntervalIndex.from_breaks([-0.003, 1.5, 3], closed="right").repeat(2) ).astype(CategoricalDtype(ordered=True)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "kwargs,msg", [ ({"duplicates": "drop"}, None), ({}, "Bin edges must be unique"), ({"duplicates": "raise"}, "Bin edges must be unique"), ({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"), ], ) def test_cut_duplicates_bin(kwargs, msg): # see gh-20947 bins = [0, 2, 4, 6, 10, 10] values = Series(np.array([1, 3, 5, 7, 9]), index=["a", "b", "c", "d", "e"]) if msg is not None: with pytest.raises(ValueError, match=msg): cut(values, bins, **kwargs) else: result = cut(values, bins, **kwargs) expected = cut(values, pd.unique(np.asarray(bins))) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("data", [9.0, -9.0, 0.0]) @pytest.mark.parametrize("length", [1, 2]) def test_single_bin(data, length): # see gh-14652, gh-15428 ser = Series([data] * length) result = cut(ser, 1, labels=False) expected = Series([0] * length, dtype=np.intp) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "array_1_writeable,array_2_writeable", [(True, True), (True, False), (False, False)] ) def test_cut_read_only(array_1_writeable, array_2_writeable): # issue 18773 array_1 = np.arange(0, 100, 10) array_1.flags.writeable = array_1_writeable array_2 = np.arange(0, 100, 10) array_2.flags.writeable = array_2_writeable hundred_elements = np.arange(100) tm.assert_categorical_equal( cut(hundred_elements, array_1), cut(hundred_elements, array_2) ) @pytest.mark.parametrize( "conv", [ lambda v: Timestamp(v), lambda v: to_datetime(v), lambda v: np.datetime64(v), lambda v: Timestamp(v).to_pydatetime(), ], ) def test_datetime_bin(conv): data = [np.datetime64("2012-12-13"), np.datetime64("2012-12-15")] bin_data = ["2012-12-12", "2012-12-14", "2012-12-16"] expected = Series( IntervalIndex( [ Interval(Timestamp(bin_data[0]), Timestamp(bin_data[1])), Interval(Timestamp(bin_data[1]), Timestamp(bin_data[2])), ] ) ).astype(CategoricalDtype(ordered=True)) bins = [conv(v) for v in bin_data] result = Series(cut(data, bins=bins)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("box", [Series, Index, np.array, list]) def test_datetime_cut(unit, box): # see gh-14714 # # Testing time data when it comes in various collection types. data = to_datetime(["2013-01-01", "2013-01-02", "2013-01-03"]).astype(f"M8[{unit}]") data = box(data) result, _ = cut(data, 3, retbins=True) if box is list: # We don't (yet) do inference on these, so get nanos unit = "ns" if unit == "s": # See https://github.com/pandas-dev/pandas/pull/56101#discussion_r1405325425 # for why we round to 8 seconds instead of 7 left = DatetimeIndex( ["2012-12-31 23:57:08", "2013-01-01 16:00:00", "2013-01-02 08:00:00"], dtype=f"M8[{unit}]", ) else: left = DatetimeIndex( [ "2012-12-31 23:57:07.200000", "2013-01-01 16:00:00", "2013-01-02 08:00:00", ], dtype=f"M8[{unit}]", ) right = DatetimeIndex( ["2013-01-01 16:00:00", "2013-01-02 08:00:00", "2013-01-03 00:00:00"], dtype=f"M8[{unit}]", ) exp_intervals = IntervalIndex.from_arrays(left, right) expected = Series(exp_intervals).astype(CategoricalDtype(ordered=True)) tm.assert_series_equal(Series(result), expected) @pytest.mark.parametrize("box", [list, np.array, Index, Series]) def test_datetime_tz_cut_mismatched_tzawareness(box): # GH#54964 bins = box( [ Timestamp("2013-01-01 04:57:07.200000"), Timestamp("2013-01-01 21:00:00"), Timestamp("2013-01-02 13:00:00"), Timestamp("2013-01-03 05:00:00"), ] ) ser = Series(date_range("20130101", periods=3, tz="US/Eastern")) msg = "Cannot use timezone-naive bins with timezone-aware values" with pytest.raises(ValueError, match=msg): cut(ser, bins) @pytest.mark.parametrize( "bins", [ 3, [ Timestamp("2013-01-01 04:57:07.200000", tz="UTC").tz_convert("US/Eastern"), Timestamp("2013-01-01 21:00:00", tz="UTC").tz_convert("US/Eastern"), Timestamp("2013-01-02 13:00:00", tz="UTC").tz_convert("US/Eastern"), Timestamp("2013-01-03 05:00:00", tz="UTC").tz_convert("US/Eastern"), ], ], ) @pytest.mark.parametrize("box", [list, np.array, Index, Series]) def test_datetime_tz_cut(bins, box): # see gh-19872 tz = "US/Eastern" ser = Series(date_range("20130101", periods=3, tz=tz)) if not isinstance(bins, int): bins = box(bins) result = cut(ser, bins) expected = Series( IntervalIndex( [ Interval( Timestamp("2012-12-31 23:57:07.200000", tz=tz), Timestamp("2013-01-01 16:00:00", tz=tz), ), Interval( Timestamp("2013-01-01 16:00:00", tz=tz), Timestamp("2013-01-02 08:00:00", tz=tz), ), Interval( Timestamp("2013-01-02 08:00:00", tz=tz), Timestamp("2013-01-03 00:00:00", tz=tz), ), ] ) ).astype(CategoricalDtype(ordered=True)) tm.assert_series_equal(result, expected) def test_datetime_nan_error(): msg = "bins must be of datetime64 dtype" with pytest.raises(ValueError, match=msg): cut(date_range("20130101", periods=3), bins=[0, 2, 4]) def test_datetime_nan_mask(): result = cut( date_range("20130102", periods=5), bins=date_range("20130101", periods=2) ) mask = result.categories.isna() tm.assert_numpy_array_equal(mask, np.array([False])) mask = result.isna() tm.assert_numpy_array_equal(mask, np.array([False, True, True, True, True])) @pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"]) def test_datetime_cut_roundtrip(tz, unit): # see gh-19891 ser = Series(date_range("20180101", periods=3, tz=tz, unit=unit)) result, result_bins = cut(ser, 2, retbins=True) expected = cut(ser, result_bins) tm.assert_series_equal(result, expected) if unit == "s": # TODO: constructing DatetimeIndex with dtype="M8[s]" without truncating # the first entry here raises in array_to_datetime. Should truncate # instead of raising? # See https://github.com/pandas-dev/pandas/pull/56101#discussion_r1405325425 # for why we round to 8 seconds instead of 7 expected_bins = DatetimeIndex( ["2017-12-31 23:57:08", "2018-01-02 00:00:00", "2018-01-03 00:00:00"], dtype=f"M8[{unit}]", ) else: expected_bins = DatetimeIndex( [ "2017-12-31 23:57:07.200000", "2018-01-02 00:00:00", "2018-01-03 00:00:00", ], dtype=f"M8[{unit}]", ) expected_bins = expected_bins.tz_localize(tz) tm.assert_index_equal(result_bins, expected_bins) def test_timedelta_cut_roundtrip(): # see gh-19891 ser = Series(timedelta_range("1day", periods=3)) result, result_bins = cut(ser, 2, retbins=True) expected = cut(ser, result_bins) tm.assert_series_equal(result, expected) expected_bins = TimedeltaIndex( ["0 days 23:57:07.200000", "2 days 00:00:00", "3 days 00:00:00"] ) tm.assert_index_equal(result_bins, expected_bins) @pytest.mark.parametrize("bins", [6, 7]) @pytest.mark.parametrize( "box, compare", [ (Series, tm.assert_series_equal), (np.array, tm.assert_categorical_equal), (list, tm.assert_equal), ], ) def test_cut_bool_coercion_to_int(bins, box, compare): # issue 20303 data_expected = box([0, 1, 1, 0, 1] * 10) data_result = box([False, True, True, False, True] * 10) expected = cut(data_expected, bins, duplicates="drop") result = cut(data_result, bins, duplicates="drop") compare(result, expected) @pytest.mark.parametrize("labels", ["foo", 1, True]) def test_cut_incorrect_labels(labels): # GH 13318 values = range(5) msg = "Bin labels must either be False, None or passed in as a list-like argument" with pytest.raises(ValueError, match=msg): cut(values, 4, labels=labels) @pytest.mark.parametrize("bins", [3, [0, 5, 15]]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("include_lowest", [True, False]) def test_cut_nullable_integer(bins, right, include_lowest): a = np.random.default_rng(2).integers(0, 10, size=50).astype(float) a[::2] = np.nan result = cut( pd.array(a, dtype="Int64"), bins, right=right, include_lowest=include_lowest ) expected = cut(a, bins, right=right, include_lowest=include_lowest) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize( "data, bins, labels, expected_codes, expected_labels", [ ([15, 17, 19], [14, 16, 18, 20], ["A", "B", "A"], [0, 1, 0], ["A", "B"]), ([1, 3, 5], [0, 2, 4, 6, 8], [2, 0, 1, 2], [2, 0, 1], [0, 1, 2]), ], ) def test_cut_non_unique_labels(data, bins, labels, expected_codes, expected_labels): # GH 33141 result = cut(data, bins=bins, labels=labels, ordered=False) expected = Categorical.from_codes( expected_codes, categories=expected_labels, ordered=False ) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize( "data, bins, labels, expected_codes, expected_labels", [ ([15, 17, 19], [14, 16, 18, 20], ["C", "B", "A"], [0, 1, 2], ["C", "B", "A"]), ([1, 3, 5], [0, 2, 4, 6, 8], [3, 0, 1, 2], [0, 1, 2], [3, 0, 1, 2]), ], ) def test_cut_unordered_labels(data, bins, labels, expected_codes, expected_labels): # GH 33141 result = cut(data, bins=bins, labels=labels, ordered=False) expected = Categorical.from_codes( expected_codes, categories=expected_labels, ordered=False ) tm.assert_categorical_equal(result, expected) def test_cut_unordered_with_missing_labels_raises_error(): # GH 33141 msg = "'labels' must be provided if 'ordered = False'" with pytest.raises(ValueError, match=msg): cut([0.5, 3], bins=[0, 1, 2], ordered=False) def test_cut_unordered_with_series_labels(): # https://github.com/pandas-dev/pandas/issues/36603 ser = Series([1, 2, 3, 4, 5]) bins = Series([0, 2, 4, 6]) labels = Series(["a", "b", "c"]) result = cut(ser, bins=bins, labels=labels, ordered=False) expected = Series(["a", "a", "b", "b", "c"], dtype="category") tm.assert_series_equal(result, expected) def test_cut_no_warnings(): df = DataFrame({"value": np.random.default_rng(2).integers(0, 100, 20)}) labels = [f"{i} - {i + 9}" for i in range(0, 100, 10)] with tm.assert_produces_warning(False): df["group"] = cut(df.value, range(0, 105, 10), right=False, labels=labels) def test_cut_with_duplicated_index_lowest_included(): # GH 42185 expected = Series( [Interval(-0.001, 2, closed="right")] * 3 + [Interval(2, 4, closed="right"), Interval(-0.001, 2, closed="right")], index=[0, 1, 2, 3, 0], dtype="category", ).cat.as_ordered() ser = Series([0, 1, 2, 3, 0], index=[0, 1, 2, 3, 0]) result = cut(ser, bins=[0, 2, 4], include_lowest=True) tm.assert_series_equal(result, expected) def test_cut_with_nonexact_categorical_indices(): # GH 42424 ser = Series(range(100)) ser1 = cut(ser, 10).value_counts().head(5) ser2 = cut(ser, 10).value_counts().tail(5) result = DataFrame({"1": ser1, "2": ser2}) index = pd.CategoricalIndex( [ Interval(-0.099, 9.9, closed="right"), Interval(9.9, 19.8, closed="right"), Interval(19.8, 29.7, closed="right"), Interval(29.7, 39.6, closed="right"), Interval(39.6, 49.5, closed="right"), Interval(49.5, 59.4, closed="right"), Interval(59.4, 69.3, closed="right"), Interval(69.3, 79.2, closed="right"), Interval(79.2, 89.1, closed="right"), Interval(89.1, 99, closed="right"), ], ordered=True, ) expected = DataFrame( {"1": [10] * 5 + [np.nan] * 5, "2": [np.nan] * 5 + [10] * 5}, index=index ) tm.assert_frame_equal(expected, result) def test_cut_with_timestamp_tuple_labels(): # GH 40661 labels = [(Timestamp(10),), (Timestamp(20),), (Timestamp(30),)] result = cut([2, 4, 6], bins=[1, 3, 5, 7], labels=labels) expected = Categorical.from_codes([0, 1, 2], labels, ordered=True) tm.assert_categorical_equal(result, expected) def test_cut_bins_datetime_intervalindex(): # https://github.com/pandas-dev/pandas/issues/46218 bins = interval_range(Timestamp("2022-02-25"), Timestamp("2022-02-27"), freq="1D") # passing Series instead of list is important to trigger bug result = cut(Series([Timestamp("2022-02-26")]).astype("M8[ns]"), bins=bins) expected = Categorical.from_codes([0], bins, ordered=True) tm.assert_categorical_equal(result.array, expected) def test_cut_with_nullable_int64(): # GH 30787 series = Series([0, 1, 2, 3, 4, pd.NA, 6, 7], dtype="Int64") bins = [0, 2, 4, 6, 8] intervals = IntervalIndex.from_breaks(bins) expected = Series( Categorical.from_codes([-1, 0, 0, 1, 1, -1, 2, 3], intervals, ordered=True) ) result = cut(series, bins=bins) tm.assert_series_equal(result, expected)