from collections import deque import re import string import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.arrays import SparseArray @pytest.fixture(params=[np.add, np.logaddexp]) def ufunc(request): # dunder op return request.param @pytest.fixture(params=[True, False], ids=["sparse", "dense"]) def sparse(request): return request.param @pytest.fixture def arrays_for_binary_ufunc(): """ A pair of random, length-100 integer-dtype arrays, that are mostly 0. """ a1 = np.random.default_rng(2).integers(0, 10, 100, dtype="int64") a2 = np.random.default_rng(2).integers(0, 10, 100, dtype="int64") a1[::3] = 0 a2[::4] = 0 return a1, a2 @pytest.mark.parametrize("ufunc", [np.positive, np.floor, np.exp]) def test_unary_ufunc(ufunc, sparse): # Test that ufunc(pd.Series) == pd.Series(ufunc) arr = np.random.default_rng(2).integers(0, 10, 10, dtype="int64") arr[::2] = 0 if sparse: arr = SparseArray(arr, dtype=pd.SparseDtype("int64", 0)) index = list(string.ascii_letters[:10]) name = "name" series = pd.Series(arr, index=index, name=name) result = ufunc(series) expected = pd.Series(ufunc(arr), index=index, name=name) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"]) def test_binary_ufunc_with_array(flip, sparse, ufunc, arrays_for_binary_ufunc): # Test that ufunc(pd.Series(a), array) == pd.Series(ufunc(a, b)) a1, a2 = arrays_for_binary_ufunc if sparse: a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) name = "name" # op(pd.Series, array) preserves the name. series = pd.Series(a1, name=name) other = a2 array_args = (a1, a2) series_args = (series, other) # ufunc(series, array) if flip: array_args = reversed(array_args) series_args = reversed(series_args) # ufunc(array, series) expected = pd.Series(ufunc(*array_args), name=name) result = ufunc(*series_args) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"]) def test_binary_ufunc_with_index(flip, sparse, ufunc, arrays_for_binary_ufunc): # Test that # * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b)) # * ufunc(Index, pd.Series) dispatches to pd.Series (returns a pd.Series) a1, a2 = arrays_for_binary_ufunc if sparse: a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) name = "name" # op(pd.Series, array) preserves the name. series = pd.Series(a1, name=name) other = pd.Index(a2, name=name).astype("int64") array_args = (a1, a2) series_args = (series, other) # ufunc(series, array) if flip: array_args = reversed(array_args) series_args = reversed(series_args) # ufunc(array, series) expected = pd.Series(ufunc(*array_args), name=name) result = ufunc(*series_args) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("shuffle", [True, False], ids=["unaligned", "aligned"]) @pytest.mark.parametrize("flip", [True, False], ids=["flipped", "straight"]) def test_binary_ufunc_with_series( flip, shuffle, sparse, ufunc, arrays_for_binary_ufunc ): # Test that # * func(pd.Series(a), pd.Series(b)) == pd.Series(ufunc(a, b)) # with alignment between the indices a1, a2 = arrays_for_binary_ufunc if sparse: a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) name = "name" # op(pd.Series, array) preserves the name. series = pd.Series(a1, name=name) other = pd.Series(a2, name=name) idx = np.random.default_rng(2).permutation(len(a1)) if shuffle: other = other.take(idx) if flip: index = other.align(series)[0].index else: index = series.align(other)[0].index else: index = series.index array_args = (a1, a2) series_args = (series, other) # ufunc(series, array) if flip: array_args = tuple(reversed(array_args)) series_args = tuple(reversed(series_args)) # ufunc(array, series) expected = pd.Series(ufunc(*array_args), index=index, name=name) result = ufunc(*series_args) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("flip", [True, False]) def test_binary_ufunc_scalar(ufunc, sparse, flip, arrays_for_binary_ufunc): # Test that # * ufunc(pd.Series, scalar) == pd.Series(ufunc(array, scalar)) # * ufunc(pd.Series, scalar) == ufunc(scalar, pd.Series) arr, _ = arrays_for_binary_ufunc if sparse: arr = SparseArray(arr) other = 2 series = pd.Series(arr, name="name") series_args = (series, other) array_args = (arr, other) if flip: series_args = tuple(reversed(series_args)) array_args = tuple(reversed(array_args)) expected = pd.Series(ufunc(*array_args), name="name") result = ufunc(*series_args) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("ufunc", [np.divmod]) # TODO: np.modf, np.frexp @pytest.mark.parametrize("shuffle", [True, False]) @pytest.mark.filterwarnings("ignore:divide by zero:RuntimeWarning") def test_multiple_output_binary_ufuncs(ufunc, sparse, shuffle, arrays_for_binary_ufunc): # Test that # the same conditions from binary_ufunc_scalar apply to # ufuncs with multiple outputs. a1, a2 = arrays_for_binary_ufunc # work around https://github.com/pandas-dev/pandas/issues/26987 a1[a1 == 0] = 1 a2[a2 == 0] = 1 if sparse: a1 = SparseArray(a1, dtype=pd.SparseDtype("int64", 0)) a2 = SparseArray(a2, dtype=pd.SparseDtype("int64", 0)) s1 = pd.Series(a1) s2 = pd.Series(a2) if shuffle: # ensure we align before applying the ufunc s2 = s2.sample(frac=1) expected = ufunc(a1, a2) assert isinstance(expected, tuple) result = ufunc(s1, s2) assert isinstance(result, tuple) tm.assert_series_equal(result[0], pd.Series(expected[0])) tm.assert_series_equal(result[1], pd.Series(expected[1])) def test_multiple_output_ufunc(sparse, arrays_for_binary_ufunc): # Test that the same conditions from unary input apply to multi-output # ufuncs arr, _ = arrays_for_binary_ufunc if sparse: arr = SparseArray(arr) series = pd.Series(arr, name="name") result = np.modf(series) expected = np.modf(arr) assert isinstance(result, tuple) assert isinstance(expected, tuple) tm.assert_series_equal(result[0], pd.Series(expected[0], name="name")) tm.assert_series_equal(result[1], pd.Series(expected[1], name="name")) def test_binary_ufunc_drops_series_name(ufunc, sparse, arrays_for_binary_ufunc): # Drop the names when they differ. a1, a2 = arrays_for_binary_ufunc s1 = pd.Series(a1, name="a") s2 = pd.Series(a2, name="b") result = ufunc(s1, s2) assert result.name is None def test_object_series_ok(): class Dummy: def __init__(self, value) -> None: self.value = value def __add__(self, other): return self.value + other.value arr = np.array([Dummy(0), Dummy(1)]) ser = pd.Series(arr) tm.assert_series_equal(np.add(ser, ser), pd.Series(np.add(ser, arr))) tm.assert_series_equal(np.add(ser, Dummy(1)), pd.Series(np.add(ser, Dummy(1)))) @pytest.fixture( params=[ pd.array([1, 3, 2], dtype=np.int64), pd.array([1, 3, 2], dtype="Int64"), pd.array([1, 3, 2], dtype="Float32"), pd.array([1, 10, 2], dtype="Sparse[int]"), pd.to_datetime(["2000", "2010", "2001"]), pd.to_datetime(["2000", "2010", "2001"]).tz_localize("CET"), pd.to_datetime(["2000", "2010", "2001"]).to_period(freq="D"), pd.to_timedelta(["1 Day", "3 Days", "2 Days"]), pd.IntervalIndex([pd.Interval(0, 1), pd.Interval(2, 3), pd.Interval(1, 2)]), ], ids=lambda x: str(x.dtype), ) def values_for_np_reduce(request): # min/max tests assume that these are monotonic increasing return request.param class TestNumpyReductions: # TODO: cases with NAs, axis kwarg for DataFrame def test_multiply(self, values_for_np_reduce, box_with_array, request): box = box_with_array values = values_for_np_reduce with tm.assert_produces_warning(None): obj = box(values) if isinstance(values, pd.core.arrays.SparseArray): mark = pytest.mark.xfail(reason="SparseArray has no 'prod'") request.applymarker(mark) if values.dtype.kind in "iuf": result = np.multiply.reduce(obj) if box is pd.DataFrame: expected = obj.prod(numeric_only=False) tm.assert_series_equal(result, expected) elif box is pd.Index: # Index has no 'prod' expected = obj._values.prod() assert result == expected else: expected = obj.prod() assert result == expected else: msg = "|".join( [ "does not support reduction", "unsupported operand type", "ufunc 'multiply' cannot use operands", ] ) with pytest.raises(TypeError, match=msg): np.multiply.reduce(obj) def test_add(self, values_for_np_reduce, box_with_array): box = box_with_array values = values_for_np_reduce with tm.assert_produces_warning(None): obj = box(values) if values.dtype.kind in "miuf": result = np.add.reduce(obj) if box is pd.DataFrame: expected = obj.sum(numeric_only=False) tm.assert_series_equal(result, expected) elif box is pd.Index: # Index has no 'sum' expected = obj._values.sum() assert result == expected else: expected = obj.sum() assert result == expected else: msg = "|".join( [ "does not support reduction", "unsupported operand type", "ufunc 'add' cannot use operands", ] ) with pytest.raises(TypeError, match=msg): np.add.reduce(obj) def test_max(self, values_for_np_reduce, box_with_array): box = box_with_array values = values_for_np_reduce same_type = True if box is pd.Index and values.dtype.kind in ["i", "f"]: # ATM Index casts to object, so we get python ints/floats same_type = False with tm.assert_produces_warning(None): obj = box(values) result = np.maximum.reduce(obj) if box is pd.DataFrame: # TODO: cases with axis kwarg expected = obj.max(numeric_only=False) tm.assert_series_equal(result, expected) else: expected = values[1] assert result == expected if same_type: # check we have e.g. Timestamp instead of dt64 assert type(result) == type(expected) def test_min(self, values_for_np_reduce, box_with_array): box = box_with_array values = values_for_np_reduce same_type = True if box is pd.Index and values.dtype.kind in ["i", "f"]: # ATM Index casts to object, so we get python ints/floats same_type = False with tm.assert_produces_warning(None): obj = box(values) result = np.minimum.reduce(obj) if box is pd.DataFrame: expected = obj.min(numeric_only=False) tm.assert_series_equal(result, expected) else: expected = values[0] assert result == expected if same_type: # check we have e.g. Timestamp instead of dt64 assert type(result) == type(expected) @pytest.mark.parametrize("type_", [list, deque, tuple]) def test_binary_ufunc_other_types(type_): a = pd.Series([1, 2, 3], name="name") b = type_([3, 4, 5]) result = np.add(a, b) expected = pd.Series(np.add(a.to_numpy(), b), name="name") tm.assert_series_equal(result, expected) def test_object_dtype_ok(): class Thing: def __init__(self, value) -> None: self.value = value def __add__(self, other): other = getattr(other, "value", other) return type(self)(self.value + other) def __eq__(self, other) -> bool: return type(other) is Thing and self.value == other.value def __repr__(self) -> str: return f"Thing({self.value})" s = pd.Series([Thing(1), Thing(2)]) result = np.add(s, Thing(1)) expected = pd.Series([Thing(2), Thing(3)]) tm.assert_series_equal(result, expected) def test_outer(): # https://github.com/pandas-dev/pandas/issues/27186 ser = pd.Series([1, 2, 3]) obj = np.array([1, 2, 3]) with pytest.raises(NotImplementedError, match=""): np.subtract.outer(ser, obj) def test_np_matmul(): # GH26650 df1 = pd.DataFrame(data=[[-1, 1, 10]]) df2 = pd.DataFrame(data=[-1, 1, 10]) expected = pd.DataFrame(data=[102]) result = np.matmul(df1, df2) tm.assert_frame_equal(expected, result) def test_array_ufuncs_for_many_arguments(): # GH39853 def add3(x, y, z): return x + y + z ufunc = np.frompyfunc(add3, 3, 1) ser = pd.Series([1, 2]) result = ufunc(ser, ser, 1) expected = pd.Series([3, 5], dtype=object) tm.assert_series_equal(result, expected) df = pd.DataFrame([[1, 2]]) msg = ( "Cannot apply ufunc " "to mixed DataFrame and Series inputs." ) with pytest.raises(NotImplementedError, match=re.escape(msg)): ufunc(ser, ser, df) # TODO(CoW) see https://github.com/pandas-dev/pandas/pull/51082 @td.skip_copy_on_write_not_yet_implemented def test_np_fix(): # np.fix is not a ufunc but is composed of several ufunc calls under the hood # with `out` and `where` keywords ser = pd.Series([-1.5, -0.5, 0.5, 1.5]) result = np.fix(ser) expected = pd.Series([-1.0, -0.0, 0.0, 1.0]) tm.assert_series_equal(result, expected)