from datetime import datetime import re import numpy as np import pytest from pandas.core.dtypes.dtypes import ArrowDtype from pandas import ( DataFrame, Index, MultiIndex, Series, _testing as tm, ) def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype): # TODO: should this raise TypeError values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) with pytest.raises(ValueError, match="expand must be True or False"): values.str.extract(".*(BAD[_]+).*(BAD)", expand=None) def test_extract_expand_kwarg(any_string_dtype): s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype) result = s.str.extract(".*(BAD[_]+).*") tm.assert_frame_equal(result, expected) result = s.str.extract(".*(BAD[_]+).*", expand=True) tm.assert_frame_equal(result, expected) expected = DataFrame( [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False) tm.assert_frame_equal(result, expected) def test_extract_expand_False_mixed_object(): ser = Series( ["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0] ) # two groups result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False) er = [np.nan, np.nan] # empty row expected = DataFrame( [["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object ) tm.assert_frame_equal(result, expected) # single group result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False) expected = Series( ["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, None, np.nan, np.nan], dtype=object, ) tm.assert_series_equal(result, expected) def test_extract_expand_index_raises(): # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(["A1", "A2", "A3", "A4", "B5"]) msg = "only one regex group is supported with Index" with pytest.raises(ValueError, match=msg): idx.str.extract("([AB])([123])", expand=False) def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype): s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) msg = "pattern contains no capture groups" # no groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=False) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=False) def test_extract_expand_single_capture_group(index_or_series, any_string_dtype): # single group renames series/index properly s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) result = s_or_idx.str.extract(r"(?PA)\d", expand=False) expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype) if index_or_series == Series: tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) def test_extract_expand_capture_groups(any_string_dtype): s = Series(["A1", "B2", "C3"], dtype=any_string_dtype) # one group, no matches result = s.str.extract("(_)", expand=False) expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two groups, no matches result = s.str.extract("(_)(_)", expand=False) expected = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one group, some matches result = s.str.extract("([AB])[123]", expand=False) expected = Series(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two groups, some matches result = s.str.extract("([AB])([123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named group result = s.str.extract("(?P[AB])", expand=False) expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two named groups result = s.str.extract("(?P[AB])(?P[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # mix named and unnamed groups result = s.str.extract("([AB])(?P[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=False) expected = Series(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two normal groups, one non-capturing group s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) result = s.str.extract("([AB])([123])(?:[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one optional group followed by one normal group s = Series(["A1", "B2", "3"], dtype=any_string_dtype) result = s.str.extract("(?P[AB])?(?P[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group followed by one optional group s = Series(["A1", "B2", "C"], dtype=any_string_dtype) result = s.str.extract("(?P[ABC])(?P[123])?", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_expand_capture_groups_index(index, any_string_dtype): # https://github.com/pandas-dev/pandas/issues/6348 # not passing index to the extractor data = ["A1", "B2", "C"] if len(index) == 0: pytest.skip("Test requires len(index) > 0") while len(index) < len(data): index = index.repeat(2) index = index[: len(data)] ser = Series(data, index=index, dtype=any_string_dtype) result = ser.str.extract(r"(\d)", expand=False) expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype) tm.assert_series_equal(result, expected) result = ser.str.extract(r"(?P\D)(?P\d)?", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], index=index, dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_single_series_name_is_preserved(any_string_dtype): s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype) result = s.str.extract(r"(?P[a-z])", expand=False) expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype) tm.assert_series_equal(result, expected) def test_extract_expand_True(any_string_dtype): # Contains tests like those in test_match and some others. s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True) expected = DataFrame( [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) def test_extract_expand_True_mixed_object(): er = [np.nan, np.nan] # empty row mixed = Series( [ "aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0, ] ) result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True) expected = DataFrame( [["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object ) tm.assert_frame_equal(result, expected) def test_extract_expand_True_single_capture_group_raises( index_or_series, any_string_dtype ): # these should work for both Series and Index # no groups s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) msg = "pattern contains no capture groups" with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=True) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=True) def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype): # single group renames series/index properly s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) result = s_or_idx.str.extract(r"(?PA)\d", expand=True) expected = DataFrame({"uno": ["A", "A"]}, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("name", [None, "series_name"]) def test_extract_series(name, any_string_dtype): # extract should give the same result whether or not the series has a name. s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype) # one group, no matches result = s.str.extract("(_)", expand=True) expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two groups, no matches result = s.str.extract("(_)(_)", expand=True) expected = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one group, some matches result = s.str.extract("([AB])[123]", expand=True) expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two groups, some matches result = s.str.extract("([AB])([123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named group result = s.str.extract("(?P[AB])", expand=True) expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two named groups result = s.str.extract("(?P[AB])(?P[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # mix named and unnamed groups result = s.str.extract("([AB])(?P[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=True) expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) def test_extract_optional_groups(any_string_dtype): # two normal groups, one non-capturing group s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) result = s.str.extract("([AB])([123])(?:[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one optional group followed by one normal group s = Series(["A1", "B2", "3"], dtype=any_string_dtype) result = s.str.extract("(?P[AB])?(?P[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group followed by one optional group s = Series(["A1", "B2", "C"], dtype=any_string_dtype) result = s.str.extract("(?P[ABC])(?P[123])?", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_dataframe_capture_groups_index(index, any_string_dtype): # GH6348 # not passing index to the extractor data = ["A1", "B2", "C"] if len(index) < len(data): pytest.skip(f"Index needs more than {len(data)} values") index = index[: len(data)] s = Series(data, index=index, dtype=any_string_dtype) result = s.str.extract(r"(\d)", expand=True) expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) result = s.str.extract(r"(?P\D)(?P\d)?", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], index=index, dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_single_group_returns_frame(any_string_dtype): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype) result = s.str.extract(r"(?P[a-z])", expand=True) expected = DataFrame({"letter": ["a", "b", "c"]}, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) def test_extractall(any_string_dtype): data = [ "dave@google.com", "tdhock5@gmail.com", "maudelaperriere@gmail.com", "rob@gmail.com some text steve@gmail.com", "a@b.com some text c@d.com and e@f.com", np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] pat = r""" (?P[a-z0-9]+) @ (?P[a-z]+) \. (?P[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] s = Series(data, dtype=any_string_dtype) # extractall should return a DataFrame with one row for each match, indexed by the # subject from which the match came. expected_index = MultiIndex.from_tuples( [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)], names=(None, "match"), ) expected = DataFrame( expected_tuples, expected_index, expected_columns, dtype=any_string_dtype ) result = s.str.extractall(pat, flags=re.VERBOSE) tm.assert_frame_equal(result, expected) # The index of the input Series should be used to construct the index of the output # DataFrame: mi = MultiIndex.from_tuples( [ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ] ) s = Series(data, index=mi, dtype=any_string_dtype) expected_index = MultiIndex.from_tuples( [ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match"), ) expected = DataFrame( expected_tuples, expected_index, expected_columns, dtype=any_string_dtype ) result = s.str.extractall(pat, flags=re.VERBOSE) tm.assert_frame_equal(result, expected) # MultiIndexed subject with names. s = Series(data, index=mi, dtype=any_string_dtype) s.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected = DataFrame( expected_tuples, expected_index, expected_columns, dtype=any_string_dtype ) result = s.str.extractall(pat, flags=re.VERBOSE) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "pat,expected_names", [ # optional groups. ("(?P[AB])?(?P[123])", ["letter", "number"]), # only one of two groups has a name. ("([AB])?(?P[123])", [0, "number"]), ], ) def test_extractall_column_names(pat, expected_names, any_string_dtype): s = Series(["", "A1", "32"], dtype=any_string_dtype) result = s.str.extractall(pat) expected = DataFrame( [("A", "1"), (np.nan, "3"), (np.nan, "2")], index=MultiIndex.from_tuples([(1, 0), (2, 0), (2, 1)], names=(None, "match")), columns=expected_names, dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extractall_single_group(any_string_dtype): s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype) expected_index = MultiIndex.from_tuples( [(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match") ) # extractall(one named group) returns DataFrame with one named column. result = s.str.extractall(r"(?P[a-z])") expected = DataFrame( {"letter": ["a", "b", "d", "c"]}, index=expected_index, dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # extractall(one un-named group) returns DataFrame with one un-named column. result = s.str.extractall(r"([a-z])") expected = DataFrame( ["a", "b", "d", "c"], index=expected_index, dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) def test_extractall_single_group_with_quantifier(any_string_dtype): # GH#13382 # extractall(one un-named group with quantifier) returns DataFrame with one un-named # column. s = Series(["ab3", "abc3", "d4cd2"], name="series_name", dtype=any_string_dtype) result = s.str.extractall(r"([a-z]+)") expected = DataFrame( ["ab", "abc", "d", "cd"], index=MultiIndex.from_tuples( [(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match") ), dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data, names", [ ([], (None,)), ([], ("i1",)), ([], (None, "i2")), ([], ("i1", "i2")), (["a3", "b3", "d4c2"], (None,)), (["a3", "b3", "d4c2"], ("i1", "i2")), (["a3", "b3", "d4c2"], (None, "i2")), (["a3", "b3", "d4c2"], ("i1", "i2")), ], ) def test_extractall_no_matches(data, names, any_string_dtype): # GH19075 extractall with no matches should return a valid MultiIndex n = len(data) if len(names) == 1: index = Index(range(n), name=names[0]) else: tuples = (tuple([i] * (n - 1)) for i in range(n)) index = MultiIndex.from_tuples(tuples, names=names) s = Series(data, name="series_name", index=index, dtype=any_string_dtype) expected_index = MultiIndex.from_tuples([], names=(names + ("match",))) # one un-named group. result = s.str.extractall("(z)") expected = DataFrame(columns=[0], index=expected_index, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two un-named groups. result = s.str.extractall("(z)(z)") expected = DataFrame(columns=[0, 1], index=expected_index, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # one named group. result = s.str.extractall("(?Pz)") expected = DataFrame( columns=["first"], index=expected_index, dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # two named groups. result = s.str.extractall("(?Pz)(?Pz)") expected = DataFrame( columns=["first", "second"], index=expected_index, dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named, one un-named. result = s.str.extractall("(z)(?Pz)") expected = DataFrame( columns=[0, "second"], index=expected_index, dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) def test_extractall_stringindex(any_string_dtype): s = Series(["a1a2", "b1", "c1"], name="xxx", dtype=any_string_dtype) result = s.str.extractall(r"[ab](?P\d)") expected = DataFrame( {"digit": ["1", "2", "1"]}, index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, "match"]), dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # index should return the same result as the default index without name thus # index.name doesn't affect to the result if any_string_dtype == "object": for idx in [ Index(["a1a2", "b1", "c1"], dtype=object), Index(["a1a2", "b1", "c1"], name="xxx", dtype=object), ]: result = idx.str.extractall(r"[ab](?P\d)") tm.assert_frame_equal(result, expected) s = Series( ["a1a2", "b1", "c1"], name="s_name", index=Index(["XX", "yy", "zz"], name="idx_name"), dtype=any_string_dtype, ) result = s.str.extractall(r"[ab](?P\d)") expected = DataFrame( {"digit": ["1", "2", "1"]}, index=MultiIndex.from_tuples( [("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"] ), dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extractall_no_capture_groups_raises(any_string_dtype): # Does not make sense to use extractall with a regex that has no capture groups. # (it returns DataFrame with one column for each capture group) s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype) with pytest.raises(ValueError, match="no capture groups"): s.str.extractall(r"[a-z]") def test_extract_index_one_two_groups(): s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name") r = s.index.str.extract(r"([A-Z])", expand=True) e = DataFrame(["A", "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract(r"(?P[A-Z])(?P[0-9])", expand=True) e_list = [("A", "3"), ("B", "3"), ("D", "4")] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(any_string_dtype): s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype) pattern_two_noname = r"([a-z])([0-9])" extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r"(?P[a-z])(?P[0-9])" extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r"(?P[a-z])" extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r"([a-z])" extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(any_string_dtype): # same as above tests, but s has an MultiIndex. mi = MultiIndex.from_tuples( [("A", "first"), ("B", "second"), ("C", "third")], names=("capital", "ordinal"), ) s = Series(["a3", "b3", "c2"], index=mi, name="series_name", dtype=any_string_dtype) pattern_two_noname = r"([a-z])([0-9])" extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r"(?P[a-z])(?P[0-9])" extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r"(?P[a-z])" extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r"([a-z])" extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_extractall_preserves_dtype(): # Ensure that when extractall is called on a series with specific dtypes set, that # the dtype is preserved in the resulting DataFrame's column. pa = pytest.importorskip("pyarrow") result = Series(["abc", "ab"], dtype=ArrowDtype(pa.string())).str.extractall("(ab)") assert result.dtypes[0] == "string[pyarrow]"