""" EA-compatible analogue to np.putmask """ from __future__ import annotations from typing import ( TYPE_CHECKING, Any, ) import numpy as np from pandas._libs import lib from pandas.core.dtypes.cast import infer_dtype_from from pandas.core.dtypes.common import is_list_like from pandas.core.arrays import ExtensionArray if TYPE_CHECKING: from pandas._typing import ( ArrayLike, npt, ) from pandas import MultiIndex def putmask_inplace(values: ArrayLike, mask: npt.NDArray[np.bool_], value: Any) -> None: """ ExtensionArray-compatible implementation of np.putmask. The main difference is we do not handle repeating or truncating like numpy. Parameters ---------- values: np.ndarray or ExtensionArray mask : np.ndarray[bool] We assume extract_bool_array has already been called. value : Any """ if ( not isinstance(values, np.ndarray) or (values.dtype == object and not lib.is_scalar(value)) # GH#43424: np.putmask raises TypeError if we cannot cast between types with # rule = "safe", a stricter guarantee we may not have here or ( isinstance(value, np.ndarray) and not np.can_cast(value.dtype, values.dtype) ) ): # GH#19266 using np.putmask gives unexpected results with listlike value # along with object dtype if is_list_like(value) and len(value) == len(values): values[mask] = value[mask] else: values[mask] = value else: # GH#37833 np.putmask is more performant than __setitem__ np.putmask(values, mask, value) def putmask_without_repeat( values: np.ndarray, mask: npt.NDArray[np.bool_], new: Any ) -> None: """ np.putmask will truncate or repeat if `new` is a listlike with len(new) != len(values). We require an exact match. Parameters ---------- values : np.ndarray mask : np.ndarray[bool] new : Any """ if getattr(new, "ndim", 0) >= 1: new = new.astype(values.dtype, copy=False) # TODO: this prob needs some better checking for 2D cases nlocs = mask.sum() if nlocs > 0 and is_list_like(new) and getattr(new, "ndim", 1) == 1: shape = np.shape(new) # np.shape compat for if setitem_datetimelike_compat # changed arraylike to list e.g. test_where_dt64_2d if nlocs == shape[-1]: # GH#30567 # If length of ``new`` is less than the length of ``values``, # `np.putmask` would first repeat the ``new`` array and then # assign the masked values hence produces incorrect result. # `np.place` on the other hand uses the ``new`` values at it is # to place in the masked locations of ``values`` np.place(values, mask, new) # i.e. values[mask] = new elif mask.shape[-1] == shape[-1] or shape[-1] == 1: np.putmask(values, mask, new) else: raise ValueError("cannot assign mismatch length to masked array") else: np.putmask(values, mask, new) def validate_putmask( values: ArrayLike | MultiIndex, mask: np.ndarray ) -> tuple[npt.NDArray[np.bool_], bool]: """ Validate mask and check if this putmask operation is a no-op. """ mask = extract_bool_array(mask) if mask.shape != values.shape: raise ValueError("putmask: mask and data must be the same size") noop = not mask.any() return mask, noop def extract_bool_array(mask: ArrayLike) -> npt.NDArray[np.bool_]: """ If we have a SparseArray or BooleanArray, convert it to ndarray[bool]. """ if isinstance(mask, ExtensionArray): # We could have BooleanArray, Sparse[bool], ... # Except for BooleanArray, this is equivalent to just # np.asarray(mask, dtype=bool) mask = mask.to_numpy(dtype=bool, na_value=False) mask = np.asarray(mask, dtype=bool) return mask def setitem_datetimelike_compat(values: np.ndarray, num_set: int, other): """ Parameters ---------- values : np.ndarray num_set : int For putmask, this is mask.sum() other : Any """ if values.dtype == object: dtype, _ = infer_dtype_from(other) if lib.is_np_dtype(dtype, "mM"): # https://github.com/numpy/numpy/issues/12550 # timedelta64 will incorrectly cast to int if not is_list_like(other): other = [other] * num_set else: other = list(other) return other