from __future__ import annotations from csv import QUOTE_NONNUMERIC from functools import partial import operator from shutil import get_terminal_size from typing import ( TYPE_CHECKING, Literal, cast, overload, ) import warnings import numpy as np from pandas._config import get_option from pandas._libs import ( NaT, algos as libalgos, lib, ) from pandas._libs.arrays import NDArrayBacked from pandas.compat.numpy import function as nv from pandas.util._exceptions import find_stack_level from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( coerce_indexer_dtype, find_common_type, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_any_real_numeric_dtype, is_bool_dtype, is_dict_like, is_hashable, is_integer_dtype, is_list_like, is_scalar, needs_i8_conversion, pandas_dtype, ) from pandas.core.dtypes.dtypes import ( ArrowDtype, CategoricalDtype, CategoricalDtypeType, ExtensionDtype, ) from pandas.core.dtypes.generic import ( ABCIndex, ABCSeries, ) from pandas.core.dtypes.missing import ( is_valid_na_for_dtype, isna, ) from pandas.core import ( algorithms, arraylike, ops, ) from pandas.core.accessor import ( PandasDelegate, delegate_names, ) from pandas.core.algorithms import ( factorize, take_nd, ) from pandas.core.arrays._mixins import ( NDArrayBackedExtensionArray, ravel_compat, ) from pandas.core.base import ( ExtensionArray, NoNewAttributesMixin, PandasObject, ) import pandas.core.common as com from pandas.core.construction import ( extract_array, sanitize_array, ) from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.core.strings.object_array import ObjectStringArrayMixin from pandas.io.formats import console if TYPE_CHECKING: from collections.abc import ( Hashable, Iterator, Sequence, ) from pandas._typing import ( ArrayLike, AstypeArg, AxisInt, Dtype, DtypeObj, NpDtype, Ordered, Self, Shape, SortKind, npt, ) from pandas import ( DataFrame, Index, Series, ) def _cat_compare_op(op): opname = f"__{op.__name__}__" fill_value = op is operator.ne @unpack_zerodim_and_defer(opname) def func(self, other): hashable = is_hashable(other) if is_list_like(other) and len(other) != len(self) and not hashable: # in hashable case we may have a tuple that is itself a category raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if not self._categories_match_up_to_permutation(other): raise TypeError(msg) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = recode_for_categories( other.codes, other.categories, self.categories, copy=False ) else: other_codes = other._codes ret = op(self._codes, other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): ret[mask] = fill_value return ret if hashable: if other in self.categories: i = self._unbox_scalar(other) ret = op(self._codes, i) if opname not in {"__eq__", "__ge__", "__gt__"}: # GH#29820 performance trick; get_loc will always give i>=0, # so in the cases (__ne__, __le__, __lt__) the setting # here is a no-op, so can be skipped. mask = self._codes == -1 ret[mask] = fill_value return ret else: return ops.invalid_comparison(self, other, op) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname not in ["__eq__", "__ne__"]: raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) other'." ) if isinstance(other, ExtensionArray) and needs_i8_conversion(other.dtype): # We would return NotImplemented here, but that messes up # ExtensionIndex's wrapped methods return op(other, self) return getattr(np.array(self), opname)(np.array(other)) func.__name__ = opname return func def contains(cat, key, container) -> bool: """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) class Categorical(NDArrayBackedExtensionArray, PandasObject, ObjectStringArrayMixin): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical. codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide `__ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) ['a', 'b', 'c', 'a', 'b', 'c'] Categories (3, object): ['a', 'b', 'c'] Missing values are not included as a category. >>> c = pd.Categorical([1, 2, 3, 1, 2, 3, np.nan]) >>> c [1, 2, 3, 1, 2, 3, NaN] Categories (3, int64): [1, 2, 3] However, their presence is indicated in the `codes` attribute by code `-1`. >>> c.codes array([ 0, 1, 2, 0, 1, 2, -1], dtype=int8) Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c ['a', 'b', 'c', 'a', 'b', 'c'] Categories (3, object): ['c' < 'b' < 'a'] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 # tolist is not actually deprecated, just suppressed in the __dir__ _hidden_attrs = PandasObject._hidden_attrs | frozenset(["tolist"]) _typ = "categorical" _dtype: CategoricalDtype @classmethod # error: Argument 2 of "_simple_new" is incompatible with supertype # "NDArrayBacked"; supertype defines the argument type as # "Union[dtype[Any], ExtensionDtype]" def _simple_new( # type: ignore[override] cls, codes: np.ndarray, dtype: CategoricalDtype ) -> Self: # NB: This is not _quite_ as simple as the "usual" _simple_new codes = coerce_indexer_dtype(codes, dtype.categories) dtype = CategoricalDtype(ordered=False).update_dtype(dtype) return super()._simple_new(codes, dtype) def __init__( self, values, categories=None, ordered=None, dtype: Dtype | None = None, fastpath: bool | lib.NoDefault = lib.no_default, copy: bool = True, ) -> None: if fastpath is not lib.no_default: # GH#20110 warnings.warn( "The 'fastpath' keyword in Categorical is deprecated and will " "be removed in a future version. Use Categorical.from_codes instead", DeprecationWarning, stacklevel=find_stack_level(), ) else: fastpath = False dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: codes = coerce_indexer_dtype(values, dtype.categories) dtype = CategoricalDtype(ordered=False).update_dtype(dtype) super().__init__(codes, dtype) return if not is_list_like(values): # GH#38433 raise TypeError("Categorical input must be list-like") # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input vdtype = getattr(values, "dtype", None) if isinstance(vdtype, CategoricalDtype): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndex, ABCSeries, ExtensionArray)): values = com.convert_to_list_like(values) if isinstance(values, list) and len(values) == 0: # By convention, empty lists result in object dtype: values = np.array([], dtype=object) elif isinstance(values, np.ndarray): if values.ndim > 1: # preempt sanitize_array from raising ValueError raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) values = sanitize_array(values, None) else: # i.e. must be a list arr = sanitize_array(values, None) null_mask = isna(arr) if null_mask.any(): # We remove null values here, then below will re-insert # them, grep "full_codes" arr_list = [values[idx] for idx in np.where(~null_mask)[0]] # GH#44900 Do not cast to float if we have only missing values if arr_list or arr.dtype == "object": sanitize_dtype = None else: sanitize_dtype = arr.dtype arr = sanitize_array(arr_list, None, dtype=sanitize_dtype) values = arr if dtype.categories is None: if isinstance(values.dtype, ArrowDtype) and issubclass( values.dtype.type, CategoricalDtypeType ): arr = values._pa_array.combine_chunks() categories = arr.dictionary.to_pandas(types_mapper=ArrowDtype) codes = arr.indices.to_numpy() dtype = CategoricalDtype(categories, values.dtype.pyarrow_dtype.ordered) else: if not isinstance(values, ABCIndex): # in particular RangeIndex xref test_index_equal_range_categories values = sanitize_array(values, None) try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif isinstance(values.dtype, CategoricalDtype): old_codes = extract_array(values)._codes codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories, copy=copy ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes dtype = CategoricalDtype(ordered=False).update_dtype(dtype) arr = coerce_indexer_dtype(codes, dtype.categories) super().__init__(arr, dtype) @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. Examples -------- >>> cat = pd.Categorical(['a', 'b'], ordered=True) >>> cat ['a', 'b'] Categories (2, object): ['a' < 'b'] >>> cat.dtype CategoricalDtype(categories=['a', 'b'], ordered=True, categories_dtype=object) """ return self._dtype @property def _internal_fill_value(self) -> int: # using the specific numpy integer instead of python int to get # the correct dtype back from _quantile in the all-NA case dtype = self._ndarray.dtype return dtype.type(-1) @classmethod def _from_sequence( cls, scalars, *, dtype: Dtype | None = None, copy: bool = False ) -> Self: return cls(scalars, dtype=dtype, copy=copy) @classmethod def _from_scalars(cls, scalars, *, dtype: DtypeObj) -> Self: if dtype is None: # The _from_scalars strictness doesn't make much sense in this case. raise NotImplementedError res = cls._from_sequence(scalars, dtype=dtype) # if there are any non-category elements in scalars, these will be # converted to NAs in res. mask = isna(scalars) if not (mask == res.isna()).all(): # Some non-category element in scalars got converted to NA in res. raise ValueError return res @overload def astype(self, dtype: npt.DTypeLike, copy: bool = ...) -> np.ndarray: ... @overload def astype(self, dtype: ExtensionDtype, copy: bool = ...) -> ExtensionArray: ... @overload def astype(self, dtype: AstypeArg, copy: bool = ...) -> ArrayLike: ... def astype(self, dtype: AstypeArg, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ dtype = pandas_dtype(dtype) if self.dtype is dtype: result = self.copy() if copy else self elif isinstance(dtype, CategoricalDtype): # GH 10696/18593/18630 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self result = self._set_dtype(dtype) elif isinstance(dtype, ExtensionDtype): return super().astype(dtype, copy=copy) elif dtype.kind in "iu" and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") elif len(self.codes) == 0 or len(self.categories) == 0: result = np.array( self, dtype=dtype, copy=copy, ) else: # GH8628 (PERF): astype category codes instead of astyping array new_cats = self.categories._values try: new_cats = new_cats.astype(dtype=dtype, copy=copy) fill_value = self.categories._na_value if not is_valid_na_for_dtype(fill_value, dtype): fill_value = lib.item_from_zerodim( np.array(self.categories._na_value).astype(dtype) ) except ( TypeError, # downstream error msg for CategoricalIndex is misleading ValueError, ): msg = f"Cannot cast {self.categories.dtype} dtype to {dtype}" raise ValueError(msg) result = take_nd( new_cats, ensure_platform_int(self._codes), fill_value=fill_value ) return result def to_list(self): """ Alias for tolist. """ # GH#51254 warnings.warn( "Categorical.to_list is deprecated and will be removed in a future " "version. Use obj.tolist() instead", FutureWarning, stacklevel=find_stack_level(), ) return self.tolist() @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ) -> Self: """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import ( Index, to_datetime, to_numeric, to_timedelta, ) cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if is_any_real_numeric_dtype(dtype.categories.dtype): cats = to_numeric(inferred_categories, errors="coerce") elif lib.is_np_dtype(dtype.categories.dtype, "M"): cats = to_datetime(inferred_categories, errors="coerce") elif lib.is_np_dtype(dtype.categories.dtype, "m"): cats = to_timedelta(inferred_categories, errors="coerce") elif is_bool_dtype(dtype.categories.dtype): if true_values is None: true_values = ["True", "TRUE", "true"] # error: Incompatible types in assignment (expression has type # "ndarray", variable has type "Index") cats = cats.isin(true_values) # type: ignore[assignment] if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls._simple_new(codes, dtype=dtype) @classmethod def from_codes( cls, codes, categories=None, ordered=None, dtype: Dtype | None = None, validate: bool = True, ) -> Self: """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. validate : bool, default True If True, validate that the codes are valid for the dtype. If False, don't validate that the codes are valid. Be careful about skipping validation, as invalid codes can lead to severe problems, such as segfaults. .. versionadded:: 2.1.0 Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) ['a', 'b', 'a', 'b'] Categories (2, object): ['a' < 'b'] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if validate: # beware: non-valid codes may segfault codes = cls._validate_codes_for_dtype(codes, dtype=dtype) return cls._simple_new(codes, dtype=dtype) # ------------------------------------------------------------------ # Categories/Codes/Ordered @property def categories(self) -> Index: """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- For :class:`pandas.Series`: >>> ser = pd.Series(['a', 'b', 'c', 'a'], dtype='category') >>> ser.cat.categories Index(['a', 'b', 'c'], dtype='object') >>> raw_cat = pd.Categorical(['a', 'b', 'c', 'a'], categories=['b', 'c', 'd']) >>> ser = pd.Series(raw_cat) >>> ser.cat.categories Index(['b', 'c', 'd'], dtype='object') For :class:`pandas.Categorical`: >>> cat = pd.Categorical(['a', 'b'], ordered=True) >>> cat.categories Index(['a', 'b'], dtype='object') For :class:`pandas.CategoricalIndex`: >>> ci = pd.CategoricalIndex(['a', 'c', 'b', 'a', 'c', 'b']) >>> ci.categories Index(['a', 'b', 'c'], dtype='object') >>> ci = pd.CategoricalIndex(['a', 'c'], categories=['c', 'b', 'a']) >>> ci.categories Index(['c', 'b', 'a'], dtype='object') """ return self.dtype.categories @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. Examples -------- For :class:`pandas.Series`: >>> ser = pd.Series(['a', 'b', 'c', 'a'], dtype='category') >>> ser.cat.ordered False >>> raw_cat = pd.Categorical(['a', 'b', 'c', 'a'], ordered=True) >>> ser = pd.Series(raw_cat) >>> ser.cat.ordered True For :class:`pandas.Categorical`: >>> cat = pd.Categorical(['a', 'b'], ordered=True) >>> cat.ordered True >>> cat = pd.Categorical(['a', 'b'], ordered=False) >>> cat.ordered False For :class:`pandas.CategoricalIndex`: >>> ci = pd.CategoricalIndex(['a', 'b'], ordered=True) >>> ci.ordered True >>> ci = pd.CategoricalIndex(['a', 'b'], ordered=False) >>> ci.ordered False """ return self.dtype.ordered @property def codes(self) -> np.ndarray: """ The category codes of this categorical index. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the ``codes`` array. Examples -------- For :class:`pandas.Categorical`: >>> cat = pd.Categorical(['a', 'b'], ordered=True) >>> cat.codes array([0, 1], dtype=int8) For :class:`pandas.CategoricalIndex`: >>> ci = pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c']) >>> ci.codes array([0, 1, 2, 0, 1, 2], dtype=int8) >>> ci = pd.CategoricalIndex(['a', 'c'], categories=['c', 'b', 'a']) >>> ci.codes array([2, 0], dtype=int8) """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath: bool = False) -> None: """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c ['a', 'b'] Categories (2, object): ['a', 'b'] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c ['a', 'c'] Categories (2, object): ['a', 'c'] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) super().__init__(self._ndarray, new_dtype) def _set_dtype(self, dtype: CategoricalDtype) -> Self: """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)._simple_new(codes, dtype=dtype) def set_ordered(self, value: bool) -> Self: """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). """ new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self.copy() NDArrayBacked.__init__(cat, cat._ndarray, new_dtype) return cat def as_ordered(self) -> Self: """ Set the Categorical to be ordered. Returns ------- Categorical Ordered Categorical. Examples -------- For :class:`pandas.Series`: >>> ser = pd.Series(['a', 'b', 'c', 'a'], dtype='category') >>> ser.cat.ordered False >>> ser = ser.cat.as_ordered() >>> ser.cat.ordered True For :class:`pandas.CategoricalIndex`: >>> ci = pd.CategoricalIndex(['a', 'b', 'c', 'a']) >>> ci.ordered False >>> ci = ci.as_ordered() >>> ci.ordered True """ return self.set_ordered(True) def as_unordered(self) -> Self: """ Set the Categorical to be unordered. Returns ------- Categorical Unordered Categorical. Examples -------- For :class:`pandas.Series`: >>> raw_cat = pd.Categorical(['a', 'b', 'c', 'a'], ordered=True) >>> ser = pd.Series(raw_cat) >>> ser.cat.ordered True >>> ser = ser.cat.as_unordered() >>> ser.cat.ordered False For :class:`pandas.CategoricalIndex`: >>> ci = pd.CategoricalIndex(['a', 'b', 'c', 'a'], ordered=True) >>> ci.ordered True >>> ci = ci.as_unordered() >>> ci.ordered False """ return self.set_ordered(False) def set_categories(self, new_categories, ordered=None, rename: bool = False): """ Set the categories to the specified new categories. ``new_categories`` can include new categories (which will result in unused categories) or remove old categories (which results in values set to ``NaN``). If ``rename=True``, the categories will simply be renamed (less or more items than in old categories will result in values set to ``NaN`` or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. Returns ------- Categorical with reordered categories. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. Examples -------- For :class:`pandas.Series`: >>> raw_cat = pd.Categorical(['a', 'b', 'c', 'A'], ... categories=['a', 'b', 'c'], ordered=True) >>> ser = pd.Series(raw_cat) >>> ser 0 a 1 b 2 c 3 NaN dtype: category Categories (3, object): ['a' < 'b' < 'c'] >>> ser.cat.set_categories(['A', 'B', 'C'], rename=True) 0 A 1 B 2 C 3 NaN dtype: category Categories (3, object): ['A' < 'B' < 'C'] For :class:`pandas.CategoricalIndex`: >>> ci = pd.CategoricalIndex(['a', 'b', 'c', 'A'], ... categories=['a', 'b', 'c'], ordered=True) >>> ci CategoricalIndex(['a', 'b', 'c', nan], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> ci.set_categories(['A', 'b', 'c']) CategoricalIndex([nan, 'b', 'c', nan], categories=['A', 'b', 'c'], ordered=True, dtype='category') >>> ci.set_categories(['A', 'b', 'c'], rename=True) CategoricalIndex(['A', 'b', 'c', nan], categories=['A', 'b', 'c'], ordered=True, dtype='category') """ if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 codes = cat._codes else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) NDArrayBacked.__init__(cat, codes, new_dtype) return cat def rename_categories(self, new_categories) -> Self: """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. Returns ------- Categorical Categorical with renamed categories. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) ['A', 'A', 'b'] Categories (2, object): ['A', 'b'] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) ['A', 'A', 'B'] Categories (2, object): ['A', 'B'] """ if is_dict_like(new_categories): new_categories = [ new_categories.get(item, item) for item in self.categories ] elif callable(new_categories): new_categories = [new_categories(item) for item in self.categories] cat = self.copy() cat._set_categories(new_categories) return cat def reorder_categories(self, new_categories, ordered=None) -> Self: """ Reorder categories as specified in new_categories. ``new_categories`` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. Returns ------- Categorical Categorical with reordered categories. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- For :class:`pandas.Series`: >>> ser = pd.Series(['a', 'b', 'c', 'a'], dtype='category') >>> ser = ser.cat.reorder_categories(['c', 'b', 'a'], ordered=True) >>> ser 0 a 1 b 2 c 3 a dtype: category Categories (3, object): ['c' < 'b' < 'a'] >>> ser.sort_values() 2 c 1 b 0 a 3 a dtype: category Categories (3, object): ['c' < 'b' < 'a'] For :class:`pandas.CategoricalIndex`: >>> ci = pd.CategoricalIndex(['a', 'b', 'c', 'a']) >>> ci CategoricalIndex(['a', 'b', 'c', 'a'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> ci.reorder_categories(['c', 'b', 'a'], ordered=True) CategoricalIndex(['a', 'b', 'c', 'a'], categories=['c', 'b', 'a'], ordered=True, dtype='category') """ if ( len(self.categories) != len(new_categories) or not self.categories.difference(new_categories).empty ): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered) def add_categories(self, new_categories) -> Self: """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. Returns ------- Categorical Categorical with new categories added. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['c', 'b', 'c']) >>> c ['c', 'b', 'c'] Categories (2, object): ['b', 'c'] >>> c.add_categories(['d', 'a']) ['c', 'b', 'c'] Categories (4, object): ['b', 'c', 'd', 'a'] """ if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) if hasattr(new_categories, "dtype"): from pandas import Series dtype = find_common_type( [self.dtype.categories.dtype, new_categories.dtype] ) new_categories = Series( list(self.dtype.categories) + list(new_categories), dtype=dtype ) else: new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self.copy() codes = coerce_indexer_dtype(cat._ndarray, new_dtype.categories) NDArrayBacked.__init__(cat, codes, new_dtype) return cat def remove_categories(self, removals) -> Self: """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. Returns ------- Categorical Categorical with removed categories. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'c', 'b', 'c', 'd']) >>> c ['a', 'c', 'b', 'c', 'd'] Categories (4, object): ['a', 'b', 'c', 'd'] >>> c.remove_categories(['d', 'a']) [NaN, 'c', 'b', 'c', NaN] Categories (2, object): ['b', 'c'] """ from pandas import Index if not is_list_like(removals): removals = [removals] removals = Index(removals).unique().dropna() new_categories = ( self.dtype.categories.difference(removals, sort=False) if self.dtype.ordered is True else self.dtype.categories.difference(removals) ) not_included = removals.difference(self.dtype.categories) if len(not_included) != 0: not_included = set(not_included) raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories(new_categories, ordered=self.ordered, rename=False) def remove_unused_categories(self) -> Self: """ Remove categories which are not used. Returns ------- Categorical Categorical with unused categories dropped. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'c', 'b', 'c', 'd']) >>> c ['a', 'c', 'b', 'c', 'd'] Categories (4, object): ['a', 'b', 'c', 'd'] >>> c[2] = 'a' >>> c[4] = 'c' >>> c ['a', 'c', 'a', 'c', 'c'] Categories (4, object): ['a', 'b', 'c', 'd'] >>> c.remove_unused_categories() ['a', 'c', 'a', 'c', 'c'] Categories (2, object): ['a', 'c'] """ idx, inv = np.unique(self._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = self.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) new_codes = coerce_indexer_dtype(inv, new_dtype.categories) cat = self.copy() NDArrayBacked.__init__(cat, new_codes, new_dtype) return cat # ------------------------------------------------------------------ def map( self, mapper, na_action: Literal["ignore"] | None | lib.NoDefault = lib.no_default, ): """ Map categories using an input mapping or function. Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'}, default 'ignore' If 'ignore', propagate NaN values, without passing them to the mapping correspondence. .. deprecated:: 2.1.0 The default value of 'ignore' has been deprecated and will be changed to None in the future. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat ['a', 'b', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> cat.map(lambda x: x.upper(), na_action=None) ['A', 'B', 'C'] Categories (3, object): ['A', 'B', 'C'] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}, na_action=None) ['first', 'second', 'third'] Categories (3, object): ['first', 'second', 'third'] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat ['a', 'b', 'c'] Categories (3, object): ['a' < 'b' < 'c'] >>> cat.map({'a': 3, 'b': 2, 'c': 1}, na_action=None) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}, na_action=None) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}, na_action=None) Index(['first', 'second', nan], dtype='object') """ if na_action is lib.no_default: warnings.warn( "The default value of 'ignore' for the `na_action` parameter in " "pandas.Categorical.map is deprecated and will be " "changed to 'None' in a future version. Please set na_action to the " "desired value to avoid seeing this warning", FutureWarning, stacklevel=find_stack_level(), ) na_action = "ignore" assert callable(mapper) or is_dict_like(mapper) new_categories = self.categories.map(mapper) has_nans = np.any(self._codes == -1) na_val = np.nan if na_action is None and has_nans: na_val = mapper(np.nan) if callable(mapper) else mapper.get(np.nan, np.nan) if new_categories.is_unique and not new_categories.hasnans and na_val is np.nan: new_dtype = CategoricalDtype(new_categories, ordered=self.ordered) return self.from_codes(self._codes.copy(), dtype=new_dtype, validate=False) if has_nans: new_categories = new_categories.insert(len(new_categories), na_val) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # ------------------------------------------------------------- # Validators; ideally these can be de-duplicated def _validate_setitem_value(self, value): if not is_hashable(value): # wrap scalars and hashable-listlikes in list return self._validate_listlike(value) else: return self._validate_scalar(value) def _validate_scalar(self, fill_value): """ Convert a user-facing fill_value to a representation to use with our underlying ndarray, raising TypeError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : int Raises ------ TypeError """ if is_valid_na_for_dtype(fill_value, self.categories.dtype): fill_value = -1 elif fill_value in self.categories: fill_value = self._unbox_scalar(fill_value) else: raise TypeError( "Cannot setitem on a Categorical with a new " f"category ({fill_value}), set the categories first" ) from None return fill_value @classmethod def _validate_codes_for_dtype(cls, codes, *, dtype: CategoricalDtype) -> np.ndarray: if isinstance(codes, ExtensionArray) and is_integer_dtype(codes.dtype): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and codes.dtype.kind not in "iu": raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return codes # ------------------------------------------------------------- @ravel_compat def __array__( self, dtype: NpDtype | None = None, copy: bool | None = None ) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. Examples -------- >>> cat = pd.Categorical(['a', 'b'], ordered=True) The following calls ``cat.__array__`` >>> np.asarray(cat) array(['a', 'b'], dtype=object) """ ret = take_nd(self.categories._values, self._codes) if dtype and np.dtype(dtype) != self.categories.dtype: return np.asarray(ret, dtype) # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ gets all the way to an # ndarray. return np.asarray(ret) def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = arraylike.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result if "out" in kwargs: # e.g. test_numpy_ufuncs_out return arraylike.dispatch_ufunc_with_out( self, ufunc, method, *inputs, **kwargs ) if method == "reduce": # e.g. TestCategoricalAnalytics::test_min_max_ordered result = arraylike.dispatch_reduction_ufunc( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state) -> None: """Necessary for making this object picklable""" if not isinstance(state, dict): return super().__setstate__(state) if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) if "_codes" in state and "_ndarray" not in state: # backward compat, changed what is property vs attribute state["_ndarray"] = state.pop("_codes") super().__setstate__(state) @property def nbytes(self) -> int: return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep: bool = False) -> int: """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) def isna(self) -> npt.NDArray[np.bool_]: """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- np.ndarray[bool] of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ return self._codes == -1 isnull = isna def notna(self) -> npt.NDArray[np.bool_]: """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- np.ndarray[bool] of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def value_counts(self, dropna: bool = True) -> Series: """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import ( CategoricalIndex, Series, ) code, cat = self._codes, self.categories ncat, mask = (len(cat), code >= 0) ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = coerce_indexer_dtype(ix, self.dtype.categories) ix = self._from_backing_data(ix) return Series( count, index=CategoricalIndex(ix), dtype="int64", name="count", copy=False ) # error: Argument 2 of "_empty" is incompatible with supertype # "NDArrayBackedExtensionArray"; supertype defines the argument type as # "ExtensionDtype" @classmethod def _empty( # type: ignore[override] cls, shape: Shape, dtype: CategoricalDtype ) -> Self: """ Analogous to np.empty(shape, dtype=dtype) Parameters ---------- shape : tuple[int] dtype : CategoricalDtype """ arr = cls._from_sequence([], dtype=dtype) # We have to use np.zeros instead of np.empty otherwise the resulting # ndarray may contain codes not supported by this dtype, in which # case repr(result) could segfault. backing = np.zeros(shape, dtype=arr._ndarray.dtype) return arr._from_backing_data(backing) def _internal_get_values(self) -> ArrayLike: """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or ExtensionArray A numpy array or ExtensionArray of the same dtype as categorical.categories.dtype. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories.dtype): return self.categories.take(self._codes, fill_value=NaT)._values elif is_integer_dtype(self.categories.dtype) and -1 in self._codes: return ( self.categories.astype("object") .take(self._codes, fill_value=np.nan) ._values ) return np.array(self) def check_for_ordered(self, op) -> None: """assert that we are ordered""" if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def argsort( self, *, ascending: bool = True, kind: SortKind = "quicksort", **kwargs ): """ Return the indices that would sort the Categorical. Missing values are sorted at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- np.ndarray[np.intp] See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) @overload def sort_values( self, *, inplace: Literal[False] = ..., ascending: bool = ..., na_position: str = ..., ) -> Self: ... @overload def sort_values( self, *, inplace: Literal[True], ascending: bool = ..., na_position: str = ... ) -> None: ... def sort_values( self, *, inplace: bool = False, ascending: bool = True, na_position: str = "last", ) -> Self | None: """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if not inplace: codes = self._codes[sorted_idx] return self._from_backing_data(codes) self._codes[:] = self._codes[sorted_idx] return None def _rank( self, *, axis: AxisInt = 0, method: str = "average", na_option: str = "keep", ascending: bool = True, pct: bool = False, ): """ See Series.rank.__doc__. """ if axis != 0: raise NotImplementedError vff = self._values_for_rank() return algorithms.rank( vff, axis=axis, method=method, na_option=na_option, ascending=ascending, pct=pct, ) def _values_for_rank(self) -> np.ndarray: """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif is_any_real_numeric_dtype(self.categories.dtype): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories( Series(self.categories, copy=False).rank().values ) ) return values def _hash_pandas_object( self, *, encoding: str, hash_key: str, categorize: bool ) -> npt.NDArray[np.uint64]: """ Hash a Categorical by hashing its categories, and then mapping the codes to the hashes. Parameters ---------- encoding : str hash_key : str categorize : bool Ignored for Categorical. Returns ------- np.ndarray[uint64] """ # Note we ignore categorize, as we are already Categorical. from pandas.core.util.hashing import hash_array # Convert ExtensionArrays to ndarrays values = np.asarray(self.categories._values) hashed = hash_array(values, encoding, hash_key, categorize=False) # we have uint64, as we don't directly support missing values # we don't want to use take_nd which will coerce to float # instead, directly construct the result with a # max(np.uint64) as the missing value indicator # # TODO: GH#15362 mask = self.isna() if len(hashed): result = hashed.take(self._codes) else: result = np.zeros(len(mask), dtype="uint64") if mask.any(): result[mask] = lib.u8max return result # ------------------------------------------------------------------ # NDArrayBackedExtensionArray compat @property def _codes(self) -> np.ndarray: return self._ndarray def _box_func(self, i: int): if i == -1: return np.nan return self.categories[i] def _unbox_scalar(self, key) -> int: # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. code = self.categories.get_loc(key) code = self._ndarray.dtype.type(code) return code # ------------------------------------------------------------------ def __iter__(self) -> Iterator: """ Returns an Iterator over the values of this Categorical. """ if self.ndim == 1: return iter(self._internal_get_values().tolist()) else: return (self[n] for n in range(len(self))) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_valid_na_for_dtype(key, self.categories.dtype): return bool(self.isna().any()) return contains(self, key, container=self._codes) # ------------------------------------------------------------------ # Rendering Methods def _formatter(self, boxed: bool = False): # Returning None here will cause format_array to do inference. return None def _repr_categories(self) -> list[str]: """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt format_array = partial( fmt.format_array, formatter=None, quoting=QUOTE_NONNUMERIC ) if len(self.categories) > max_categories: num = max_categories // 2 head = format_array(self.categories[:num]._values) tail = format_array(self.categories[-num:]._values) category_strs = head + ["..."] + tail else: category_strs = format_array(self.categories._values) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _get_repr_footer(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, _ = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = f"{sep.rstrip()}\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return f"{levheader}[{levstring.replace(' < ... < ', ' ... ')}]" def _get_values_repr(self) -> str: from pandas.io.formats import format as fmt assert len(self) > 0 vals = self._internal_get_values() fmt_values = fmt.format_array( vals, None, float_format=None, na_rep="NaN", quoting=QUOTE_NONNUMERIC, ) fmt_values = [i.strip() for i in fmt_values] joined = ", ".join(fmt_values) result = "[" + joined + "]" return result def __repr__(self) -> str: """ String representation. """ footer = self._get_repr_footer() length = len(self) max_len = 10 if length > max_len: # In long cases we do not display all entries, so we add Length # information to the __repr__. num = max_len // 2 head = self[:num]._get_values_repr() tail = self[-(max_len - num) :]._get_values_repr() body = f"{head[:-1]}, ..., {tail[1:]}" length_info = f"Length: {len(self)}" result = f"{body}\n{length_info}\n{footer}" elif length > 0: body = self._get_values_repr() result = f"{body}\n{footer}" else: # In the empty case we use a comma instead of newline to get # a more compact __repr__ body = "[]" result = f"{body}, {footer}" return result # ------------------------------------------------------------------ def _validate_listlike(self, value): # NB: here we assume scalar-like tuples have already been excluded value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if self.dtype != value.dtype: raise TypeError( "Cannot set a Categorical with another, " "without identical categories" ) # dtype equality implies categories_match_up_to_permutation value = self._encode_with_my_categories(value) return value._codes from pandas import Index # tupleize_cols=False for e.g. test_fillna_iterable_category GH#41914 to_add = Index._with_infer(value, tupleize_cols=False).difference( self.categories ) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise TypeError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) codes = self.categories.get_indexer(value) return codes.astype(self._ndarray.dtype, copy=False) def _reverse_indexer(self) -> dict[Hashable, npt.NDArray[np.intp]]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- Dict[Hashable, np.ndarray[np.intp]] dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c ['a', 'a', 'b', 'c', 'a'] Categories (3, object): ['a', 'b', 'c'] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( ensure_platform_int(self.codes), categories.size ) counts = ensure_int64(counts).cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) return dict(zip(categories, _result)) # ------------------------------------------------------------------ # Reductions def _reduce( self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs ): result = super()._reduce(name, skipna=skipna, keepdims=keepdims, **kwargs) if name in ["argmax", "argmin"]: # don't wrap in Categorical! return result if keepdims: return type(self)(result, dtype=self.dtype) else: return result def min(self, *, skipna: bool = True, **kwargs): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical`, NA value if empty """ nv.validate_minmax_axis(kwargs.get("axis", 0)) nv.validate_min((), kwargs) self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self._wrap_reduction_result(None, pointer) def max(self, *, skipna: bool = True, **kwargs): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical`, NA if array is empty """ nv.validate_minmax_axis(kwargs.get("axis", 0)) nv.validate_max((), kwargs) self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self._wrap_reduction_result(None, pointer) def _mode(self, dropna: bool = True) -> Categorical: codes = self._codes mask = None if dropna: mask = self.isna() res_codes = algorithms.mode(codes, mask=mask) res_codes = cast(np.ndarray, res_codes) assert res_codes.dtype == codes.dtype res = self._from_backing_data(res_codes) return res # ------------------------------------------------------------------ # ExtensionArray Interface def unique(self) -> Self: """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. .. versionchanged:: 1.3.0 Previously, unused categories were dropped from the new categories. Returns ------- Categorical See Also -------- pandas.unique CategoricalIndex.unique Series.unique : Return unique values of Series object. Examples -------- >>> pd.Categorical(list("baabc")).unique() ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.Categorical(list("baab"), categories=list("abc"), ordered=True).unique() ['b', 'a'] Categories (3, object): ['a' < 'b' < 'c'] """ # pylint: disable=useless-parent-delegation return super().unique() def _cast_quantile_result(self, res_values: np.ndarray) -> np.ndarray: # make sure we have correct itemsize for resulting codes assert res_values.dtype == self._ndarray.dtype return res_values def equals(self, other: object) -> bool: """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if not isinstance(other, Categorical): return False elif self._categories_match_up_to_permutation(other): other = self._encode_with_my_categories(other) return np.array_equal(self._codes, other._codes) return False @classmethod def _concat_same_type(cls, to_concat: Sequence[Self], axis: AxisInt = 0) -> Self: from pandas.core.dtypes.concat import union_categoricals first = to_concat[0] if axis >= first.ndim: raise ValueError( f"axis {axis} is out of bounds for array of dimension {first.ndim}" ) if axis == 1: # Flatten, concatenate then reshape if not all(x.ndim == 2 for x in to_concat): raise ValueError # pass correctly-shaped to union_categoricals tc_flat = [] for obj in to_concat: tc_flat.extend([obj[:, i] for i in range(obj.shape[1])]) res_flat = cls._concat_same_type(tc_flat, axis=0) result = res_flat.reshape(len(first), -1, order="F") return result result = union_categoricals(to_concat) return result # ------------------------------------------------------------------ def _encode_with_my_categories(self, other: Categorical) -> Categorical: """ Re-encode another categorical using this Categorical's categories. Notes ----- This assumes we have already checked self._categories_match_up_to_permutation(other). """ # Indexing on codes is more efficient if categories are the same, # so we can apply some optimizations based on the degree of # dtype-matching. codes = recode_for_categories( other.codes, other.categories, self.categories, copy=False ) return self._from_backing_data(codes) def _categories_match_up_to_permutation(self, other: Categorical) -> bool: """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ return hash(self.dtype) == hash(other.dtype) def describe(self) -> DataFrame: """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / counts.sum() from pandas import Index from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = Index(["counts", "freqs"]) result.index.name = "categories" return result def isin(self, values: ArrayLike) -> npt.NDArray[np.bool_]: """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : np.ndarray or ExtensionArray The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- np.ndarray[bool] Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer_for(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def _replace(self, *, to_replace, value, inplace: bool = False): from pandas import Index orig_dtype = self.dtype inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() mask = isna(np.asarray(value)) if mask.any(): removals = np.asarray(to_replace)[mask] removals = cat.categories[cat.categories.isin(removals)] new_cat = cat.remove_categories(removals) NDArrayBacked.__init__(cat, new_cat.codes, new_cat.dtype) ser = cat.categories.to_series() ser = ser.replace(to_replace=to_replace, value=value) all_values = Index(ser) # GH51016: maintain order of existing categories idxr = cat.categories.get_indexer_for(all_values) locs = np.arange(len(ser)) locs = np.where(idxr == -1, locs, idxr) locs = locs.argsort() new_categories = ser.take(locs) new_categories = new_categories.drop_duplicates(keep="first") new_categories = Index(new_categories) new_codes = recode_for_categories( cat._codes, all_values, new_categories, copy=False ) new_dtype = CategoricalDtype(new_categories, ordered=self.dtype.ordered) NDArrayBacked.__init__(cat, new_codes, new_dtype) if new_dtype != orig_dtype: warnings.warn( # GH#55147 "The behavior of Series.replace (and DataFrame.replace) with " "CategoricalDtype is deprecated. In a future version, replace " "will only be used for cases that preserve the categories. " "To change the categories, use ser.cat.rename_categories " "instead.", FutureWarning, stacklevel=find_stack_level(), ) if not inplace: return cat # ------------------------------------------------------------------------ # String methods interface def _str_map( self, f, na_value=np.nan, dtype=np.dtype("object"), convert: bool = True ): # Optimization to apply the callable `f` to the categories once # and rebuild the result by `take`ing from the result with the codes. # Returns the same type as the object-dtype implementation though. from pandas.core.arrays import NumpyExtensionArray categories = self.categories codes = self.codes result = NumpyExtensionArray(categories.to_numpy())._str_map(f, na_value, dtype) return take_nd(result, codes, fill_value=na_value) def _str_get_dummies(self, sep: str = "|"): # sep may not be in categories. Just bail on this. from pandas.core.arrays import NumpyExtensionArray return NumpyExtensionArray(self.astype(str))._str_get_dummies(sep) # ------------------------------------------------------------------------ # GroupBy Methods def _groupby_op( self, *, how: str, has_dropped_na: bool, min_count: int, ngroups: int, ids: npt.NDArray[np.intp], **kwargs, ): from pandas.core.groupby.ops import WrappedCythonOp kind = WrappedCythonOp.get_kind_from_how(how) op = WrappedCythonOp(how=how, kind=kind, has_dropped_na=has_dropped_na) dtype = self.dtype if how in ["sum", "prod", "cumsum", "cumprod", "skew"]: raise TypeError(f"{dtype} type does not support {how} operations") if how in ["min", "max", "rank", "idxmin", "idxmax"] and not dtype.ordered: # raise TypeError instead of NotImplementedError to ensure we # don't go down a group-by-group path, since in the empty-groups # case that would fail to raise raise TypeError(f"Cannot perform {how} with non-ordered Categorical") if how not in [ "rank", "any", "all", "first", "last", "min", "max", "idxmin", "idxmax", ]: if kind == "transform": raise TypeError(f"{dtype} type does not support {how} operations") raise TypeError(f"{dtype} dtype does not support aggregation '{how}'") result_mask = None mask = self.isna() if how == "rank": assert self.ordered # checked earlier npvalues = self._ndarray elif how in ["first", "last", "min", "max", "idxmin", "idxmax"]: npvalues = self._ndarray result_mask = np.zeros(ngroups, dtype=bool) else: # any/all npvalues = self.astype(bool) res_values = op._cython_op_ndim_compat( npvalues, min_count=min_count, ngroups=ngroups, comp_ids=ids, mask=mask, result_mask=result_mask, **kwargs, ) if how in op.cast_blocklist: return res_values elif how in ["first", "last", "min", "max"]: res_values[result_mask == 1] = -1 return self._from_backing_data(res_values) # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c'] >>> s.cat.categories Index(['a', 'b', 'c'], dtype='object') >>> s.cat.rename_categories(list("cba")) 0 c 1 b 2 b 3 a 4 a 5 a dtype: category Categories (3, object): ['c', 'b', 'a'] >>> s.cat.reorder_categories(list("cba")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['c', 'b', 'a'] >>> s.cat.add_categories(["d", "e"]) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): ['a', 'b', 'c', 'd', 'e'] >>> s.cat.remove_categories(["a", "c"]) 0 NaN 1 b 2 b 3 NaN 4 NaN 5 NaN dtype: category Categories (1, object): ['b'] >>> s1 = s.cat.add_categories(["d", "e"]) >>> s1.cat.remove_unused_categories() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c'] >>> s.cat.set_categories(list("abcde")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): ['a', 'b', 'c', 'd', 'e'] >>> s.cat.as_ordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a' < 'b' < 'c'] >>> s.cat.as_unordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c'] """ def __init__(self, data) -> None: self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not isinstance(data.dtype, CategoricalDtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name: str): return getattr(self._parent, name) # error: Signature of "_delegate_property_set" incompatible with supertype # "PandasDelegate" def _delegate_property_set(self, name: str, new_values): # type: ignore[override] return setattr(self._parent, name, new_values) @property def codes(self) -> Series: """ Return Series of codes as well as the index. Examples -------- >>> raw_cate = pd.Categorical(["a", "b", "c", "a"], categories=["a", "b"]) >>> ser = pd.Series(raw_cate) >>> ser.cat.codes 0 0 1 1 2 -1 3 0 dtype: int8 """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name: str, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values( values: Index | Series | ExtensionArray | np.ndarray, categories: Index, ) -> np.ndarray: """ utility routine to turn values into codes given the specified categories If `values` is known to be a Categorical, use recode_for_categories instead. """ codes = categories.get_indexer_for(values) return coerce_indexer_dtype(codes, categories) def recode_for_categories( codes: np.ndarray, old_categories, new_categories, copy: bool = True ) -> np.ndarray: """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index copy: bool, default True Whether to copy if the codes are unchanged. Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1], dtype=int8) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls if copy: return codes.copy() return codes elif new_categories.equals(old_categories): # Same categories, so no need to actually recode if copy: return codes.copy() return codes indexer = coerce_indexer_dtype( new_categories.get_indexer_for(old_categories), new_categories ) new_codes = take_nd(indexer, codes, fill_value=-1) return new_codes def factorize_from_iterable(values) -> tuple[np.ndarray, Index]: """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ from pandas import CategoricalIndex if not is_list_like(values): raise TypeError("Input must be list-like") categories: Index vdtype = getattr(values, "dtype", None) if isinstance(vdtype, CategoricalDtype): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) cat = Categorical.from_codes(cat_codes, dtype=values.dtype, validate=False) categories = CategoricalIndex(cat) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables) -> tuple[list[np.ndarray], list[Index]]: """ A higher-level wrapper over `factorize_from_iterable`. Parameters ---------- iterables : list-like of list-likes Returns ------- codes : list of ndarrays categories : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return two empty lists. return [], [] codes, categories = zip(*(factorize_from_iterable(it) for it in iterables)) return list(codes), list(categories)