from __future__ import annotations import numpy as np from pandas.core.algorithms import unique1d from pandas.core.arrays.categorical import ( Categorical, CategoricalDtype, recode_for_categories, ) def recode_for_groupby( c: Categorical, sort: bool, observed: bool ) -> tuple[Categorical, Categorical | None]: """ Code the categories to ensure we can groupby for categoricals. If observed=True, we return a new Categorical with the observed categories only. If sort=False, return a copy of self, coded with categories as returned by .unique(), followed by any categories not appearing in the data. If sort=True, return self. This method is needed solely to ensure the categorical index of the GroupBy result has categories in the order of appearance in the data (GH-8868). Parameters ---------- c : Categorical sort : bool The value of the sort parameter groupby was called with. observed : bool Account only for the observed values Returns ------- Categorical If sort=False, the new categories are set to the order of appearance in codes (unless ordered=True, in which case the original order is preserved), followed by any unrepresented categories in the original order. Categorical or None If we are observed, return the original categorical, otherwise None """ # we only care about observed values if observed: # In cases with c.ordered, this is equivalent to # return c.remove_unused_categories(), c unique_codes = unique1d(c.codes) take_codes = unique_codes[unique_codes != -1] if sort: take_codes = np.sort(take_codes) # we recode according to the uniques categories = c.categories.take(take_codes) codes = recode_for_categories(c.codes, c.categories, categories) # return a new categorical that maps our new codes # and categories dtype = CategoricalDtype(categories, ordered=c.ordered) return Categorical._simple_new(codes, dtype=dtype), c # Already sorted according to c.categories; all is fine if sort: return c, None # sort=False should order groups in as-encountered order (GH-8868) # xref GH:46909: Re-ordering codes faster than using (set|add|reorder)_categories all_codes = np.arange(c.categories.nunique()) # GH 38140: exclude nan from indexer for categories unique_notnan_codes = unique1d(c.codes[c.codes != -1]) if sort: unique_notnan_codes = np.sort(unique_notnan_codes) if len(all_codes) > len(unique_notnan_codes): # GH 13179: All categories need to be present, even if missing from the data missing_codes = np.setdiff1d(all_codes, unique_notnan_codes, assume_unique=True) take_codes = np.concatenate((unique_notnan_codes, missing_codes)) else: take_codes = unique_notnan_codes return Categorical(c, c.unique().categories.take(take_codes)), None