from __future__ import annotations from collections.abc import ( Hashable, Iterator, ) from datetime import timedelta import operator from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Callable, Literal, cast, overload, ) import numpy as np from pandas._libs import ( index as libindex, lib, ) from pandas._libs.algos import unique_deltas from pandas._libs.lib import no_default from pandas.compat.numpy import function as nv from pandas.util._decorators import ( cache_readonly, deprecate_nonkeyword_arguments, doc, ) from pandas.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, ) from pandas.core.dtypes.generic import ABCTimedeltaIndex from pandas.core import ops import pandas.core.common as com from pandas.core.construction import extract_array import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( Index, maybe_extract_name, ) from pandas.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from pandas._typing import ( Axis, Dtype, NaPosition, Self, npt, ) _empty_range = range(0) _dtype_int64 = np.dtype(np.int64) class RangeIndex(Index): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of an Index limited to representing monotonic ranges with a 64-bit dtype. Using RangeIndex may in some instances improve computing speed. This is the default index type used by DataFrame and Series when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. copy : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base pandas Index type. Examples -------- >>> list(pd.RangeIndex(5)) [0, 1, 2, 3, 4] >>> list(pd.RangeIndex(-2, 4)) [-2, -1, 0, 1, 2, 3] >>> list(pd.RangeIndex(0, 10, 2)) [0, 2, 4, 6, 8] >>> list(pd.RangeIndex(2, -10, -3)) [2, -1, -4, -7] >>> list(pd.RangeIndex(0)) [] >>> list(pd.RangeIndex(1, 0)) [] """ _typ = "rangeindex" _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _range: range _values: np.ndarray @property def _engine_type(self) -> type[libindex.Int64Engine]: return libindex.Int64Engine # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, copy: bool = False, name: Hashable | None = None, ) -> Self: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if isinstance(start, cls): return start.copy(name=name) elif isinstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if com.all_none(start, stop, step): raise TypeError("RangeIndex(...) must be called with integers") start = ensure_python_int(start) if start is not None else 0 if stop is None: start, stop = 0, start else: stop = ensure_python_int(stop) step = ensure_python_int(step) if step is not None else 1 if step == 0: raise ValueError("Step must not be zero") rng = range(start, stop, step) return cls._simple_new(rng, name=name) @classmethod def from_range(cls, data: range, name=None, dtype: Dtype | None = None) -> Self: """ Create :class:`pandas.RangeIndex` from a ``range`` object. Returns ------- RangeIndex Examples -------- >>> pd.RangeIndex.from_range(range(5)) RangeIndex(start=0, stop=5, step=1) >>> pd.RangeIndex.from_range(range(2, -10, -3)) RangeIndex(start=2, stop=-10, step=-3) """ if not isinstance(data, range): raise TypeError( f"{cls.__name__}(...) must be called with object coercible to a " f"range, {repr(data)} was passed" ) cls._validate_dtype(dtype) return cls._simple_new(data, name=name) # error: Argument 1 of "_simple_new" is incompatible with supertype "Index"; # supertype defines the argument type as # "Union[ExtensionArray, ndarray[Any, Any]]" [override] @classmethod def _simple_new( # type: ignore[override] cls, values: range, name: Hashable | None = None ) -> Self: result = object.__new__(cls) assert isinstance(values, range) result._range = values result._name = name result._cache = {} result._reset_identity() result._references = None return result @classmethod def _validate_dtype(cls, dtype: Dtype | None) -> None: if dtype is None: return validation_func, expected = cls._dtype_validation_metadata if not validation_func(dtype): raise ValueError( f"Incorrect `dtype` passed: expected {expected}, received {dtype}" ) # -------------------------------------------------------------------- # error: Return type "Type[Index]" of "_constructor" incompatible with return # type "Type[RangeIndex]" in supertype "Index" @cache_readonly def _constructor(self) -> type[Index]: # type: ignore[override] """return the class to use for construction""" return Index # error: Signature of "_data" incompatible with supertype "Index" @cache_readonly def _data(self) -> np.ndarray: # type: ignore[override] """ An int array that for performance reasons is created only when needed. The constructed array is saved in ``_cache``. """ return np.arange(self.start, self.stop, self.step, dtype=np.int64) def _get_data_as_items(self) -> list[tuple[str, int]]: """return a list of tuples of start, stop, step""" rng = self._range return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)] def __reduce__(self): d = {"name": self._name} d.update(dict(self._get_data_as_items())) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- # Rendering Methods def _format_attrs(self): """ Return a list of tuples of the (attr, formatted_value) """ attrs = cast("list[tuple[str, str | int]]", self._get_data_as_items()) if self._name is not None: attrs.append(("name", ibase.default_pprint(self._name))) return attrs def _format_with_header(self, *, header: list[str], na_rep: str) -> list[str]: # Equivalent to Index implementation, but faster if not len(self._range): return header first_val_str = str(self._range[0]) last_val_str = str(self._range[-1]) max_length = max(len(first_val_str), len(last_val_str)) return header + [f"{x:<{max_length}}" for x in self._range] # -------------------------------------------------------------------- @property def start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). Examples -------- >>> idx = pd.RangeIndex(5) >>> idx.start 0 >>> idx = pd.RangeIndex(2, -10, -3) >>> idx.start 2 """ # GH 25710 return self._range.start @property def stop(self) -> int: """ The value of the `stop` parameter. Examples -------- >>> idx = pd.RangeIndex(5) >>> idx.stop 5 >>> idx = pd.RangeIndex(2, -10, -3) >>> idx.stop -10 """ return self._range.stop @property def step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). Examples -------- >>> idx = pd.RangeIndex(5) >>> idx.step 1 >>> idx = pd.RangeIndex(2, -10, -3) >>> idx.step -3 Even if :class:`pandas.RangeIndex` is empty, ``step`` is still ``1`` if not supplied. >>> idx = pd.RangeIndex(1, 0) >>> idx.step 1 """ # GH 25710 return self._range.step @cache_readonly def nbytes(self) -> int: """ Return the number of bytes in the underlying data. """ rng = self._range return getsizeof(rng) + sum( getsizeof(getattr(rng, attr_name)) for attr_name in ["start", "stop", "step"] ) def memory_usage(self, deep: bool = False) -> int: """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self.nbytes @property def dtype(self) -> np.dtype: return _dtype_int64 @property def is_unique(self) -> bool: """return if the index has unique values""" return True @cache_readonly def is_monotonic_increasing(self) -> bool: return self._range.step > 0 or len(self) <= 1 @cache_readonly def is_monotonic_decreasing(self) -> bool: return self._range.step < 0 or len(self) <= 1 def __contains__(self, key: Any) -> bool: hash(key) try: key = ensure_python_int(key) except TypeError: return False return key in self._range @property def inferred_type(self) -> str: return "integer" # -------------------------------------------------------------------- # Indexing Methods @doc(Index.get_loc) def get_loc(self, key) -> int: if is_integer(key) or (is_float(key) and key.is_integer()): new_key = int(key) try: return self._range.index(new_key) except ValueError as err: raise KeyError(key) from err if isinstance(key, Hashable): raise KeyError(key) self._check_indexing_error(key) raise KeyError(key) def _get_indexer( self, target: Index, method: str | None = None, limit: int | None = None, tolerance=None, ) -> npt.NDArray[np.intp]: if com.any_not_none(method, tolerance, limit): return super()._get_indexer( target, method=method, tolerance=tolerance, limit=limit ) if self.step > 0: start, stop, step = self.start, self.stop, self.step else: # GH 28678: work on reversed range for simplicity reverse = self._range[::-1] start, stop, step = reverse.start, reverse.stop, reverse.step target_array = np.asarray(target) locs = target_array - start valid = (locs % step == 0) & (locs >= 0) & (target_array < stop) locs[~valid] = -1 locs[valid] = locs[valid] / step if step != self.step: # We reversed this range: transform to original locs locs[valid] = len(self) - 1 - locs[valid] return ensure_platform_int(locs) @cache_readonly def _should_fallback_to_positional(self) -> bool: """ Should an integer key be treated as positional? """ return False # -------------------------------------------------------------------- def tolist(self) -> list[int]: return list(self._range) @doc(Index.__iter__) def __iter__(self) -> Iterator[int]: yield from self._range @doc(Index._shallow_copy) def _shallow_copy(self, values, name: Hashable = no_default): name = self._name if name is no_default else name if values.dtype.kind == "f": return Index(values, name=name, dtype=np.float64) # GH 46675 & 43885: If values is equally spaced, return a # more memory-compact RangeIndex instead of Index with 64-bit dtype unique_diffs = unique_deltas(values) if len(unique_diffs) == 1 and unique_diffs[0] != 0: diff = unique_diffs[0] new_range = range(values[0], values[-1] + diff, diff) return type(self)._simple_new(new_range, name=name) else: return self._constructor._simple_new(values, name=name) def _view(self) -> Self: result = type(self)._simple_new(self._range, name=self._name) result._cache = self._cache return result @doc(Index.copy) def copy(self, name: Hashable | None = None, deep: bool = False) -> Self: name = self._validate_names(name=name, deep=deep)[0] new_index = self._rename(name=name) return new_index def _minmax(self, meth: str): no_steps = len(self) - 1 if no_steps == -1: return np.nan elif (meth == "min" and self.step > 0) or (meth == "max" and self.step < 0): return self.start return self.start + self.step * no_steps def min(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The minimum value of the RangeIndex""" nv.validate_minmax_axis(axis) nv.validate_min(args, kwargs) return self._minmax("min") def max(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The maximum value of the RangeIndex""" nv.validate_minmax_axis(axis) nv.validate_max(args, kwargs) return self._minmax("max") def argsort(self, *args, **kwargs) -> npt.NDArray[np.intp]: """ Returns the indices that would sort the index and its underlying data. Returns ------- np.ndarray[np.intp] See Also -------- numpy.ndarray.argsort """ ascending = kwargs.pop("ascending", True) # EA compat kwargs.pop("kind", None) # e.g. "mergesort" is irrelevant nv.validate_argsort(args, kwargs) if self._range.step > 0: result = np.arange(len(self), dtype=np.intp) else: result = np.arange(len(self) - 1, -1, -1, dtype=np.intp) if not ascending: result = result[::-1] return result def factorize( self, sort: bool = False, use_na_sentinel: bool = True, ) -> tuple[npt.NDArray[np.intp], RangeIndex]: codes = np.arange(len(self), dtype=np.intp) uniques = self if sort and self.step < 0: codes = codes[::-1] uniques = uniques[::-1] return codes, uniques def equals(self, other: object) -> bool: """ Determines if two Index objects contain the same elements. """ if isinstance(other, RangeIndex): return self._range == other._range return super().equals(other) # error: Signature of "sort_values" incompatible with supertype "Index" @overload # type: ignore[override] def sort_values( self, *, return_indexer: Literal[False] = ..., ascending: bool = ..., na_position: NaPosition = ..., key: Callable | None = ..., ) -> Self: ... @overload def sort_values( self, *, return_indexer: Literal[True], ascending: bool = ..., na_position: NaPosition = ..., key: Callable | None = ..., ) -> tuple[Self, np.ndarray | RangeIndex]: ... @overload def sort_values( self, *, return_indexer: bool = ..., ascending: bool = ..., na_position: NaPosition = ..., key: Callable | None = ..., ) -> Self | tuple[Self, np.ndarray | RangeIndex]: ... @deprecate_nonkeyword_arguments( version="3.0", allowed_args=["self"], name="sort_values" ) def sort_values( self, return_indexer: bool = False, ascending: bool = True, na_position: NaPosition = "last", key: Callable | None = None, ) -> Self | tuple[Self, np.ndarray | RangeIndex]: if key is not None: return super().sort_values( return_indexer=return_indexer, ascending=ascending, na_position=na_position, key=key, ) else: sorted_index = self inverse_indexer = False if ascending: if self.step < 0: sorted_index = self[::-1] inverse_indexer = True else: if self.step > 0: sorted_index = self[::-1] inverse_indexer = True if return_indexer: if inverse_indexer: rng = range(len(self) - 1, -1, -1) else: rng = range(len(self)) return sorted_index, RangeIndex(rng) else: return sorted_index # -------------------------------------------------------------------- # Set Operations def _intersection(self, other: Index, sort: bool = False): # caller is responsible for checking self and other are both non-empty if not isinstance(other, RangeIndex): return super()._intersection(other, sort=sort) first = self._range[::-1] if self.step < 0 else self._range second = other._range[::-1] if other.step < 0 else other._range # check whether intervals intersect # deals with in- and decreasing ranges int_low = max(first.start, second.start) int_high = min(first.stop, second.stop) if int_high <= int_low: return self._simple_new(_empty_range) # Method hint: linear Diophantine equation # solve intersection problem # performance hint: for identical step sizes, could use # cheaper alternative gcd, s, _ = self._extended_gcd(first.step, second.step) # check whether element sets intersect if (first.start - second.start) % gcd: return self._simple_new(_empty_range) # calculate parameters for the RangeIndex describing the # intersection disregarding the lower bounds tmp_start = first.start + (second.start - first.start) * first.step // gcd * s new_step = first.step * second.step // gcd new_range = range(tmp_start, int_high, new_step) new_index = self._simple_new(new_range) # adjust index to limiting interval new_start = new_index._min_fitting_element(int_low) new_range = range(new_start, new_index.stop, new_index.step) new_index = self._simple_new(new_range) if (self.step < 0 and other.step < 0) is not (new_index.step < 0): new_index = new_index[::-1] if sort is None: new_index = new_index.sort_values() return new_index def _min_fitting_element(self, lower_limit: int) -> int: """Returns the smallest element greater than or equal to the limit""" no_steps = -(-(lower_limit - self.start) // abs(self.step)) return self.start + abs(self.step) * no_steps def _extended_gcd(self, a: int, b: int) -> tuple[int, int, int]: """ Extended Euclidean algorithms to solve Bezout's identity: a*x + b*y = gcd(x, y) Finds one particular solution for x, y: s, t Returns: gcd, s, t """ s, old_s = 0, 1 t, old_t = 1, 0 r, old_r = b, a while r: quotient = old_r // r old_r, r = r, old_r - quotient * r old_s, s = s, old_s - quotient * s old_t, t = t, old_t - quotient * t return old_r, old_s, old_t def _range_in_self(self, other: range) -> bool: """Check if other range is contained in self""" # https://stackoverflow.com/a/32481015 if not other: return True if not self._range: return False if len(other) > 1 and other.step % self._range.step: return False return other.start in self._range and other[-1] in self._range def _union(self, other: Index, sort: bool | None): """ Form the union of two Index objects and sorts if possible Parameters ---------- other : Index or array-like sort : bool or None, default None Whether to sort (monotonically increasing) the resulting index. ``sort=None|True`` returns a ``RangeIndex`` if possible or a sorted ``Index`` with a int64 dtype if not. ``sort=False`` can return a ``RangeIndex`` if self is monotonically increasing and other is fully contained in self. Otherwise, returns an unsorted ``Index`` with an int64 dtype. Returns ------- union : Index """ if isinstance(other, RangeIndex): if sort in (None, True) or ( sort is False and self.step > 0 and self._range_in_self(other._range) ): # GH 47557: Can still return a RangeIndex # if other range in self and sort=False start_s, step_s = self.start, self.step end_s = self.start + self.step * (len(self) - 1) start_o, step_o = other.start, other.step end_o = other.start + other.step * (len(other) - 1) if self.step < 0: start_s, step_s, end_s = end_s, -step_s, start_s if other.step < 0: start_o, step_o, end_o = end_o, -step_o, start_o if len(self) == 1 and len(other) == 1: step_s = step_o = abs(self.start - other.start) elif len(self) == 1: step_s = step_o elif len(other) == 1: step_o = step_s start_r = min(start_s, start_o) end_r = max(end_s, end_o) if step_o == step_s: if ( (start_s - start_o) % step_s == 0 and (start_s - end_o) <= step_s and (start_o - end_s) <= step_s ): return type(self)(start_r, end_r + step_s, step_s) if ( (step_s % 2 == 0) and (abs(start_s - start_o) == step_s / 2) and (abs(end_s - end_o) == step_s / 2) ): # e.g. range(0, 10, 2) and range(1, 11, 2) # but not range(0, 20, 4) and range(1, 21, 4) GH#44019 return type(self)(start_r, end_r + step_s / 2, step_s / 2) elif step_o % step_s == 0: if ( (start_o - start_s) % step_s == 0 and (start_o + step_s >= start_s) and (end_o - step_s <= end_s) ): return type(self)(start_r, end_r + step_s, step_s) elif step_s % step_o == 0: if ( (start_s - start_o) % step_o == 0 and (start_s + step_o >= start_o) and (end_s - step_o <= end_o) ): return type(self)(start_r, end_r + step_o, step_o) return super()._union(other, sort=sort) def _difference(self, other, sort=None): # optimized set operation if we have another RangeIndex self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name = self._convert_can_do_setop(other) if not isinstance(other, RangeIndex): return super()._difference(other, sort=sort) if sort is not False and self.step < 0: return self[::-1]._difference(other) res_name = ops.get_op_result_name(self, other) first = self._range[::-1] if self.step < 0 else self._range overlap = self.intersection(other) if overlap.step < 0: overlap = overlap[::-1] if len(overlap) == 0: return self.rename(name=res_name) if len(overlap) == len(self): return self[:0].rename(res_name) # overlap.step will always be a multiple of self.step (see _intersection) if len(overlap) == 1: if overlap[0] == self[0]: return self[1:] elif overlap[0] == self[-1]: return self[:-1] elif len(self) == 3 and overlap[0] == self[1]: return self[::2] else: return super()._difference(other, sort=sort) elif len(overlap) == 2 and overlap[0] == first[0] and overlap[-1] == first[-1]: # e.g. range(-8, 20, 7) and range(13, -9, -3) return self[1:-1] if overlap.step == first.step: if overlap[0] == first.start: # The difference is everything after the intersection new_rng = range(overlap[-1] + first.step, first.stop, first.step) elif overlap[-1] == first[-1]: # The difference is everything before the intersection new_rng = range(first.start, overlap[0], first.step) elif overlap._range == first[1:-1]: # e.g. range(4) and range(1, 3) step = len(first) - 1 new_rng = first[::step] else: # The difference is not range-like # e.g. range(1, 10, 1) and range(3, 7, 1) return super()._difference(other, sort=sort) else: # We must have len(self) > 1, bc we ruled out above # len(overlap) == 0 and len(overlap) == len(self) assert len(self) > 1 if overlap.step == first.step * 2: if overlap[0] == first[0] and overlap[-1] in (first[-1], first[-2]): # e.g. range(1, 10, 1) and range(1, 10, 2) new_rng = first[1::2] elif overlap[0] == first[1] and overlap[-1] in (first[-1], first[-2]): # e.g. range(1, 10, 1) and range(2, 10, 2) new_rng = first[::2] else: # We can get here with e.g. range(20) and range(0, 10, 2) return super()._difference(other, sort=sort) else: # e.g. range(10) and range(0, 10, 3) return super()._difference(other, sort=sort) new_index = type(self)._simple_new(new_rng, name=res_name) if first is not self._range: new_index = new_index[::-1] return new_index def symmetric_difference( self, other, result_name: Hashable | None = None, sort=None ): if not isinstance(other, RangeIndex) or sort is not None: return super().symmetric_difference(other, result_name, sort) left = self.difference(other) right = other.difference(self) result = left.union(right) if result_name is not None: result = result.rename(result_name) return result # -------------------------------------------------------------------- # error: Return type "Index" of "delete" incompatible with return type # "RangeIndex" in supertype "Index" def delete(self, loc) -> Index: # type: ignore[override] # In some cases we can retain RangeIndex, see also # DatetimeTimedeltaMixin._get_delete_Freq if is_integer(loc): if loc in (0, -len(self)): return self[1:] if loc in (-1, len(self) - 1): return self[:-1] if len(self) == 3 and loc in (1, -2): return self[::2] elif lib.is_list_like(loc): slc = lib.maybe_indices_to_slice(np.asarray(loc, dtype=np.intp), len(self)) if isinstance(slc, slice): # defer to RangeIndex._difference, which is optimized to return # a RangeIndex whenever possible other = self[slc] return self.difference(other, sort=False) return super().delete(loc) def insert(self, loc: int, item) -> Index: if len(self) and (is_integer(item) or is_float(item)): # We can retain RangeIndex is inserting at the beginning or end, # or right in the middle. rng = self._range if loc == 0 and item == self[0] - self.step: new_rng = range(rng.start - rng.step, rng.stop, rng.step) return type(self)._simple_new(new_rng, name=self._name) elif loc == len(self) and item == self[-1] + self.step: new_rng = range(rng.start, rng.stop + rng.step, rng.step) return type(self)._simple_new(new_rng, name=self._name) elif len(self) == 2 and item == self[0] + self.step / 2: # e.g. inserting 1 into [0, 2] step = int(self.step / 2) new_rng = range(self.start, self.stop, step) return type(self)._simple_new(new_rng, name=self._name) return super().insert(loc, item) def _concat(self, indexes: list[Index], name: Hashable) -> Index: """ Overriding parent method for the case of all RangeIndex instances. When all members of "indexes" are of type RangeIndex: result will be RangeIndex if possible, Index with a int64 dtype otherwise. E.g.: indexes = [RangeIndex(3), RangeIndex(3, 6)] -> RangeIndex(6) indexes = [RangeIndex(3), RangeIndex(4, 6)] -> Index([0,1,2,4,5], dtype='int64') """ if not all(isinstance(x, RangeIndex) for x in indexes): return super()._concat(indexes, name) elif len(indexes) == 1: return indexes[0] rng_indexes = cast(list[RangeIndex], indexes) start = step = next_ = None # Filter the empty indexes non_empty_indexes = [obj for obj in rng_indexes if len(obj)] for obj in non_empty_indexes: rng = obj._range if start is None: # This is set by the first non-empty index start = rng.start if step is None and len(rng) > 1: step = rng.step elif step is None: # First non-empty index had only one element if rng.start == start: values = np.concatenate([x._values for x in rng_indexes]) result = self._constructor(values) return result.rename(name) step = rng.start - start non_consecutive = (step != rng.step and len(rng) > 1) or ( next_ is not None and rng.start != next_ ) if non_consecutive: result = self._constructor( np.concatenate([x._values for x in rng_indexes]) ) return result.rename(name) if step is not None: next_ = rng[-1] + step if non_empty_indexes: # Get the stop value from "next" or alternatively # from the last non-empty index stop = non_empty_indexes[-1].stop if next_ is None else next_ return RangeIndex(start, stop, step).rename(name) # Here all "indexes" had 0 length, i.e. were empty. # In this case return an empty range index. return RangeIndex(0, 0).rename(name) def __len__(self) -> int: """ return the length of the RangeIndex """ return len(self._range) @property def size(self) -> int: return len(self) def __getitem__(self, key): """ Conserve RangeIndex type for scalar and slice keys. """ if isinstance(key, slice): return self._getitem_slice(key) elif is_integer(key): new_key = int(key) try: return self._range[new_key] except IndexError as err: raise IndexError( f"index {key} is out of bounds for axis 0 with size {len(self)}" ) from err elif is_scalar(key): raise IndexError( "only integers, slices (`:`), " "ellipsis (`...`), numpy.newaxis (`None`) " "and integer or boolean " "arrays are valid indices" ) return super().__getitem__(key) def _getitem_slice(self, slobj: slice) -> Self: """ Fastpath for __getitem__ when we know we have a slice. """ res = self._range[slobj] return type(self)._simple_new(res, name=self._name) @unpack_zerodim_and_defer("__floordiv__") def __floordiv__(self, other): if is_integer(other) and other != 0: if len(self) == 0 or self.start % other == 0 and self.step % other == 0: start = self.start // other step = self.step // other stop = start + len(self) * step new_range = range(start, stop, step or 1) return self._simple_new(new_range, name=self._name) if len(self) == 1: start = self.start // other new_range = range(start, start + 1, 1) return self._simple_new(new_range, name=self._name) return super().__floordiv__(other) # -------------------------------------------------------------------- # Reductions def all(self, *args, **kwargs) -> bool: return 0 not in self._range def any(self, *args, **kwargs) -> bool: return any(self._range) # -------------------------------------------------------------------- def _cmp_method(self, other, op): if isinstance(other, RangeIndex) and self._range == other._range: # Both are immutable so if ._range attr. are equal, shortcut is possible return super()._cmp_method(self, op) return super()._cmp_method(other, op) def _arith_method(self, other, op): """ Parameters ---------- other : Any op : callable that accepts 2 params perform the binary op """ if isinstance(other, ABCTimedeltaIndex): # Defer to TimedeltaIndex implementation return NotImplemented elif isinstance(other, (timedelta, np.timedelta64)): # GH#19333 is_integer evaluated True on timedelta64, # so we need to catch these explicitly return super()._arith_method(other, op) elif lib.is_np_dtype(getattr(other, "dtype", None), "m"): # Must be an np.ndarray; GH#22390 return super()._arith_method(other, op) if op in [ operator.pow, ops.rpow, operator.mod, ops.rmod, operator.floordiv, ops.rfloordiv, divmod, ops.rdivmod, ]: return super()._arith_method(other, op) step: Callable | None = None if op in [operator.mul, ops.rmul, operator.truediv, ops.rtruediv]: step = op # TODO: if other is a RangeIndex we may have more efficient options right = extract_array(other, extract_numpy=True, extract_range=True) left = self try: # apply if we have an override if step: with np.errstate(all="ignore"): rstep = step(left.step, right) # we don't have a representable op # so return a base index if not is_integer(rstep) or not rstep: raise ValueError # GH#53255 else: rstep = -left.step if op == ops.rsub else left.step with np.errstate(all="ignore"): rstart = op(left.start, right) rstop = op(left.stop, right) res_name = ops.get_op_result_name(self, other) result = type(self)(rstart, rstop, rstep, name=res_name) # for compat with numpy / Index with int64 dtype # even if we can represent as a RangeIndex, return # as a float64 Index if we have float-like descriptors if not all(is_integer(x) for x in [rstart, rstop, rstep]): result = result.astype("float64") return result except (ValueError, TypeError, ZeroDivisionError): # test_arithmetic_explicit_conversions return super()._arith_method(other, op) # error: Return type "Index" of "take" incompatible with return type # "RangeIndex" in supertype "Index" def take( # type: ignore[override] self, indices, axis: Axis = 0, allow_fill: bool = True, fill_value=None, **kwargs, ) -> Index: if kwargs: nv.validate_take((), kwargs) if is_scalar(indices): raise TypeError("Expected indices to be array-like") indices = ensure_platform_int(indices) # raise an exception if allow_fill is True and fill_value is not None self._maybe_disallow_fill(allow_fill, fill_value, indices) if len(indices) == 0: taken = np.array([], dtype=self.dtype) else: ind_max = indices.max() if ind_max >= len(self): raise IndexError( f"index {ind_max} is out of bounds for axis 0 with size {len(self)}" ) ind_min = indices.min() if ind_min < -len(self): raise IndexError( f"index {ind_min} is out of bounds for axis 0 with size {len(self)}" ) taken = indices.astype(self.dtype, casting="safe") if ind_min < 0: taken %= len(self) if self.step != 1: taken *= self.step if self.start != 0: taken += self.start # _constructor so RangeIndex-> Index with an int64 dtype return self._constructor._simple_new(taken, name=self.name)