""" Boilerplate functions used in defining binary operations. """ from __future__ import annotations from functools import wraps from typing import ( TYPE_CHECKING, Callable, ) from pandas._libs.lib import item_from_zerodim from pandas._libs.missing import is_matching_na from pandas.core.dtypes.generic import ( ABCIndex, ABCSeries, ) if TYPE_CHECKING: from pandas._typing import F def unpack_zerodim_and_defer(name: str) -> Callable[[F], F]: """ Boilerplate for pandas conventions in arithmetic and comparison methods. Parameters ---------- name : str Returns ------- decorator """ def wrapper(method: F) -> F: return _unpack_zerodim_and_defer(method, name) return wrapper def _unpack_zerodim_and_defer(method, name: str): """ Boilerplate for pandas conventions in arithmetic and comparison methods. Ensure method returns NotImplemented when operating against "senior" classes. Ensure zero-dimensional ndarrays are always unpacked. Parameters ---------- method : binary method name : str Returns ------- method """ stripped_name = name.removeprefix("__").removesuffix("__") is_cmp = stripped_name in {"eq", "ne", "lt", "le", "gt", "ge"} @wraps(method) def new_method(self, other): if is_cmp and isinstance(self, ABCIndex) and isinstance(other, ABCSeries): # For comparison ops, Index does *not* defer to Series pass else: prio = getattr(other, "__pandas_priority__", None) if prio is not None: if prio > self.__pandas_priority__: # e.g. other is DataFrame while self is Index/Series/EA return NotImplemented other = item_from_zerodim(other) return method(self, other) return new_method def get_op_result_name(left, right): """ Find the appropriate name to pin to an operation result. This result should always be either an Index or a Series. Parameters ---------- left : {Series, Index} right : object Returns ------- name : object Usually a string """ if isinstance(right, (ABCSeries, ABCIndex)): name = _maybe_match_name(left, right) else: name = left.name return name def _maybe_match_name(a, b): """ Try to find a name to attach to the result of an operation between a and b. If only one of these has a `name` attribute, return that name. Otherwise return a consensus name if they match or None if they have different names. Parameters ---------- a : object b : object Returns ------- name : str or None See Also -------- pandas.core.common.consensus_name_attr """ a_has = hasattr(a, "name") b_has = hasattr(b, "name") if a_has and b_has: try: if a.name == b.name: return a.name elif is_matching_na(a.name, b.name): # e.g. both are np.nan return a.name else: return None except TypeError: # pd.NA if is_matching_na(a.name, b.name): return a.name return None except ValueError: # e.g. np.int64(1) vs (np.int64(1), np.int64(2)) return None elif a_has: return a.name elif b_has: return b.name return None