from __future__ import annotations import re from typing import TYPE_CHECKING import numpy as np from pandas.util._decorators import Appender from pandas.core.dtypes.common import is_list_like from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.missing import notna import pandas.core.algorithms as algos from pandas.core.indexes.api import MultiIndex from pandas.core.reshape.concat import concat from pandas.core.reshape.util import tile_compat from pandas.core.shared_docs import _shared_docs from pandas.core.tools.numeric import to_numeric if TYPE_CHECKING: from collections.abc import Hashable from pandas._typing import AnyArrayLike from pandas import DataFrame def ensure_list_vars(arg_vars, variable: str, columns) -> list: if arg_vars is not None: if not is_list_like(arg_vars): return [arg_vars] elif isinstance(columns, MultiIndex) and not isinstance(arg_vars, list): raise ValueError( f"{variable} must be a list of tuples when columns are a MultiIndex" ) else: return list(arg_vars) else: return [] @Appender(_shared_docs["melt"] % {"caller": "pd.melt(df, ", "other": "DataFrame.melt"}) def melt( frame: DataFrame, id_vars=None, value_vars=None, var_name=None, value_name: Hashable = "value", col_level=None, ignore_index: bool = True, ) -> DataFrame: if value_name in frame.columns: raise ValueError( f"value_name ({value_name}) cannot match an element in " "the DataFrame columns." ) id_vars = ensure_list_vars(id_vars, "id_vars", frame.columns) value_vars_was_not_none = value_vars is not None value_vars = ensure_list_vars(value_vars, "value_vars", frame.columns) if id_vars or value_vars: if col_level is not None: level = frame.columns.get_level_values(col_level) else: level = frame.columns labels = id_vars + value_vars idx = level.get_indexer_for(labels) missing = idx == -1 if missing.any(): missing_labels = [ lab for lab, not_found in zip(labels, missing) if not_found ] raise KeyError( "The following id_vars or value_vars are not present in " f"the DataFrame: {missing_labels}" ) if value_vars_was_not_none: frame = frame.iloc[:, algos.unique(idx)] else: frame = frame.copy() else: frame = frame.copy() if col_level is not None: # allow list or other? # frame is a copy frame.columns = frame.columns.get_level_values(col_level) if var_name is None: if isinstance(frame.columns, MultiIndex): if len(frame.columns.names) == len(set(frame.columns.names)): var_name = frame.columns.names else: var_name = [f"variable_{i}" for i in range(len(frame.columns.names))] else: var_name = [ frame.columns.name if frame.columns.name is not None else "variable" ] elif is_list_like(var_name): raise ValueError(f"{var_name=} must be a scalar.") else: var_name = [var_name] num_rows, K = frame.shape num_cols_adjusted = K - len(id_vars) mdata: dict[Hashable, AnyArrayLike] = {} for col in id_vars: id_data = frame.pop(col) if not isinstance(id_data.dtype, np.dtype): # i.e. ExtensionDtype if num_cols_adjusted > 0: mdata[col] = concat([id_data] * num_cols_adjusted, ignore_index=True) else: # We can't concat empty list. (GH 46044) mdata[col] = type(id_data)([], name=id_data.name, dtype=id_data.dtype) else: mdata[col] = np.tile(id_data._values, num_cols_adjusted) mcolumns = id_vars + var_name + [value_name] if frame.shape[1] > 0 and not any( not isinstance(dt, np.dtype) and dt._supports_2d for dt in frame.dtypes ): mdata[value_name] = concat( [frame.iloc[:, i] for i in range(frame.shape[1])] ).values else: mdata[value_name] = frame._values.ravel("F") for i, col in enumerate(var_name): mdata[col] = frame.columns._get_level_values(i).repeat(num_rows) result = frame._constructor(mdata, columns=mcolumns) if not ignore_index: result.index = tile_compat(frame.index, num_cols_adjusted) return result def lreshape(data: DataFrame, groups: dict, dropna: bool = True) -> DataFrame: """ Reshape wide-format data to long. Generalized inverse of DataFrame.pivot. Accepts a dictionary, ``groups``, in which each key is a new column name and each value is a list of old column names that will be "melted" under the new column name as part of the reshape. Parameters ---------- data : DataFrame The wide-format DataFrame. groups : dict {new_name : list_of_columns}. dropna : bool, default True Do not include columns whose entries are all NaN. Returns ------- DataFrame Reshaped DataFrame. See Also -------- melt : Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivot : Create a spreadsheet-style pivot table as a DataFrame. DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. wide_to_long : Wide panel to long format. Less flexible but more user-friendly than melt. Examples -------- >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526], ... 'team': ['Red Sox', 'Yankees'], ... 'year1': [2007, 2007], 'year2': [2008, 2008]}) >>> data hr1 hr2 team year1 year2 0 514 545 Red Sox 2007 2008 1 573 526 Yankees 2007 2008 >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']}) team year hr 0 Red Sox 2007 514 1 Yankees 2007 573 2 Red Sox 2008 545 3 Yankees 2008 526 """ mdata = {} pivot_cols = [] all_cols: set[Hashable] = set() K = len(next(iter(groups.values()))) for target, names in groups.items(): if len(names) != K: raise ValueError("All column lists must be same length") to_concat = [data[col]._values for col in names] mdata[target] = concat_compat(to_concat) pivot_cols.append(target) all_cols = all_cols.union(names) id_cols = list(data.columns.difference(all_cols)) for col in id_cols: mdata[col] = np.tile(data[col]._values, K) if dropna: mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool) for c in pivot_cols: mask &= notna(mdata[c]) if not mask.all(): mdata = {k: v[mask] for k, v in mdata.items()} return data._constructor(mdata, columns=id_cols + pivot_cols) def wide_to_long( df: DataFrame, stubnames, i, j, sep: str = "", suffix: str = r"\d+" ) -> DataFrame: r""" Unpivot a DataFrame from wide to long format. Less flexible but more user-friendly than melt. With stubnames ['A', 'B'], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,... You specify what you want to call this suffix in the resulting long format with `j` (for example `j='year'`) Each row of these wide variables are assumed to be uniquely identified by `i` (can be a single column name or a list of column names) All remaining variables in the data frame are left intact. Parameters ---------- df : DataFrame The wide-format DataFrame. stubnames : str or list-like The stub name(s). The wide format variables are assumed to start with the stub names. i : str or list-like Column(s) to use as id variable(s). j : str The name of the sub-observation variable. What you wish to name your suffix in the long format. sep : str, default "" A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying `sep='-'`. suffix : str, default '\\d+' A regular expression capturing the wanted suffixes. '\\d+' captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class '\\D+'. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying `suffix='(!?one|two)'`. When all suffixes are numeric, they are cast to int64/float64. Returns ------- DataFrame A DataFrame that contains each stub name as a variable, with new index (i, j). See Also -------- melt : Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivot : Create a spreadsheet-style pivot table as a DataFrame. DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- All extra variables are left untouched. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typical case. Examples -------- >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... # doctest: +NORMALIZE_WHITESPACE X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 With multiple id columns >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9 Going from long back to wide just takes some creative use of `unstack` >>> w = l.unstack() >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format) >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 Less wieldy column names are also handled >>> np.random.seed(0) >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3), ... 'A(weekly)-2011': np.random.rand(3), ... 'B(weekly)-2010': np.random.rand(3), ... 'B(weekly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2 >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id', ... j='year', sep='-') ... # doctest: +NORMALIZE_WHITESPACE X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895 If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long >>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != []]) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)'] All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes. >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age', ... sep='_', suffix=r'\w+') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9 """ def get_var_names(df, stub: str, sep: str, suffix: str): regex = rf"^{re.escape(stub)}{re.escape(sep)}{suffix}$" return df.columns[df.columns.str.match(regex)] def melt_stub(df, stub: str, i, j, value_vars, sep: str): newdf = melt( df, id_vars=i, value_vars=value_vars, value_name=stub.rstrip(sep), var_name=j, ) newdf[j] = newdf[j].str.replace(re.escape(stub + sep), "", regex=True) # GH17627 Cast numerics suffixes to int/float try: newdf[j] = to_numeric(newdf[j]) except (TypeError, ValueError, OverflowError): # TODO: anything else to catch? pass return newdf.set_index(i + [j]) if not is_list_like(stubnames): stubnames = [stubnames] else: stubnames = list(stubnames) if df.columns.isin(stubnames).any(): raise ValueError("stubname can't be identical to a column name") if not is_list_like(i): i = [i] else: i = list(i) if df[i].duplicated().any(): raise ValueError("the id variables need to uniquely identify each row") _melted = [] value_vars_flattened = [] for stub in stubnames: value_var = get_var_names(df, stub, sep, suffix) value_vars_flattened.extend(value_var) _melted.append(melt_stub(df, stub, i, j, value_var, sep)) melted = concat(_melted, axis=1) id_vars = df.columns.difference(value_vars_flattened) new = df[id_vars] if len(i) == 1: return new.set_index(i).join(melted) else: return new.merge(melted.reset_index(), on=i).set_index(i + [j])