from __future__ import annotations _shared_docs: dict[str, str] = {} _shared_docs[ "aggregate" ] = """ Aggregate using one or more operations over the specified axis. Parameters ---------- func : function, str, list or dict Function to use for aggregating the data. If a function, must either work when passed a {klass} or when passed to {klass}.apply. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` - dict of axis labels -> functions, function names or list of such. {axis} *args Positional arguments to pass to `func`. **kwargs Keyword arguments to pass to `func`. Returns ------- scalar, Series or DataFrame The return can be: * scalar : when Series.agg is called with single function * Series : when DataFrame.agg is called with a single function * DataFrame : when DataFrame.agg is called with several functions {see_also} Notes ----- The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` for more details. A passed user-defined-function will be passed a Series for evaluation. {examples}""" _shared_docs[ "compare" ] = """ Compare to another {klass} and show the differences. Parameters ---------- other : {klass} Object to compare with. align_axis : {{0 or 'index', 1 or 'columns'}}, default 1 Determine which axis to align the comparison on. * 0, or 'index' : Resulting differences are stacked vertically with rows drawn alternately from self and other. * 1, or 'columns' : Resulting differences are aligned horizontally with columns drawn alternately from self and other. keep_shape : bool, default False If true, all rows and columns are kept. Otherwise, only the ones with different values are kept. keep_equal : bool, default False If true, the result keeps values that are equal. Otherwise, equal values are shown as NaNs. result_names : tuple, default ('self', 'other') Set the dataframes names in the comparison. .. versionadded:: 1.5.0 """ _shared_docs[ "groupby" ] = """ Group %(klass)s using a mapper or by a Series of columns. A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups. Parameters ---------- by : mapping, function, label, pd.Grouper or list of such Used to determine the groups for the groupby. If ``by`` is a function, it's called on each value of the object's index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series' values are first aligned; see ``.align()`` method). If a list or ndarray of length equal to the selected axis is passed (see the `groupby user guide `_), the values are used as-is to determine the groups. A label or list of labels may be passed to group by the columns in ``self``. Notice that a tuple is interpreted as a (single) key. axis : {0 or 'index', 1 or 'columns'}, default 0 Split along rows (0) or columns (1). For `Series` this parameter is unused and defaults to 0. .. deprecated:: 2.1.0 Will be removed and behave like axis=0 in a future version. For ``axis=1``, do ``frame.T.groupby(...)`` instead. level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels. Do not specify both ``by`` and ``level``. as_index : bool, default True Return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output. This argument has no effect on filtrations (see the `filtrations in the user guide `_), such as ``head()``, ``tail()``, ``nth()`` and in transformations (see the `transformations in the user guide `_). sort : bool, default True Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group. If False, the groups will appear in the same order as they did in the original DataFrame. This argument has no effect on filtrations (see the `filtrations in the user guide `_), such as ``head()``, ``tail()``, ``nth()`` and in transformations (see the `transformations in the user guide `_). .. versionchanged:: 2.0.0 Specifying ``sort=False`` with an ordered categorical grouper will no longer sort the values. group_keys : bool, default True When calling apply and the ``by`` argument produces a like-indexed (i.e. :ref:`a transform `) result, add group keys to index to identify pieces. By default group keys are not included when the result's index (and column) labels match the inputs, and are included otherwise. .. versionchanged:: 1.5.0 Warns that ``group_keys`` will no longer be ignored when the result from ``apply`` is a like-indexed Series or DataFrame. Specify ``group_keys`` explicitly to include the group keys or not. .. versionchanged:: 2.0.0 ``group_keys`` now defaults to ``True``. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. deprecated:: 2.1.0 The default value will change to True in a future version of pandas. dropna : bool, default True If True, and if group keys contain NA values, NA values together with row/column will be dropped. If False, NA values will also be treated as the key in groups. Returns ------- pandas.api.typing.%(klass)sGroupBy Returns a groupby object that contains information about the groups. See Also -------- resample : Convenience method for frequency conversion and resampling of time series. Notes ----- See the `user guide `__ for more detailed usage and examples, including splitting an object into groups, iterating through groups, selecting a group, aggregation, and more. """ _shared_docs[ "melt" ] = """ Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. Parameters ---------- id_vars : scalar, tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : scalar, tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar, default None Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column, can't be an existing column label. col_level : scalar, optional If columns are a MultiIndex then use this level to melt. ignore_index : bool, default True If True, original index is ignored. If False, the original index is retained. Index labels will be repeated as necessary. Returns ------- DataFrame Unpivoted DataFrame. See Also -------- %(other)s : Identical method. pivot_table : Create a spreadsheet-style pivot table as a DataFrame. DataFrame.pivot : Return reshaped DataFrame organized by given index / column values. DataFrame.explode : Explode a DataFrame from list-like columns to long format. Notes ----- Reference :ref:`the user guide ` for more examples. Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 Original index values can be kept around: >>> %(caller)sid_vars=['A'], value_vars=['B', 'C'], ignore_index=False) A variable value 0 a B 1 1 b B 3 2 c B 5 0 a C 2 1 b C 4 2 c C 6 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ _shared_docs[ "transform" ] = """ Call ``func`` on self producing a {klass} with the same axis shape as self. Parameters ---------- func : function, str, list-like or dict-like Function to use for transforming the data. If a function, must either work when passed a {klass} or when passed to {klass}.apply. If func is both list-like and dict-like, dict-like behavior takes precedence. Accepted combinations are: - function - string function name - list-like of functions and/or function names, e.g. ``[np.exp, 'sqrt']`` - dict-like of axis labels -> functions, function names or list-like of such. {axis} *args Positional arguments to pass to `func`. **kwargs Keyword arguments to pass to `func`. Returns ------- {klass} A {klass} that must have the same length as self. Raises ------ ValueError : If the returned {klass} has a different length than self. See Also -------- {klass}.agg : Only perform aggregating type operations. {klass}.apply : Invoke function on a {klass}. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` for more details. Examples -------- >>> df = pd.DataFrame({{'A': range(3), 'B': range(1, 4)}}) >>> df A B 0 0 1 1 1 2 2 2 3 >>> df.transform(lambda x: x + 1) A B 0 1 2 1 2 3 2 3 4 Even though the resulting {klass} must have the same length as the input {klass}, it is possible to provide several input functions: >>> s = pd.Series(range(3)) >>> s 0 0 1 1 2 2 dtype: int64 >>> s.transform([np.sqrt, np.exp]) sqrt exp 0 0.000000 1.000000 1 1.000000 2.718282 2 1.414214 7.389056 You can call transform on a GroupBy object: >>> df = pd.DataFrame({{ ... "Date": [ ... "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05", ... "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05"], ... "Data": [5, 8, 6, 1, 50, 100, 60, 120], ... }}) >>> df Date Data 0 2015-05-08 5 1 2015-05-07 8 2 2015-05-06 6 3 2015-05-05 1 4 2015-05-08 50 5 2015-05-07 100 6 2015-05-06 60 7 2015-05-05 120 >>> df.groupby('Date')['Data'].transform('sum') 0 55 1 108 2 66 3 121 4 55 5 108 6 66 7 121 Name: Data, dtype: int64 >>> df = pd.DataFrame({{ ... "c": [1, 1, 1, 2, 2, 2, 2], ... "type": ["m", "n", "o", "m", "m", "n", "n"] ... }}) >>> df c type 0 1 m 1 1 n 2 1 o 3 2 m 4 2 m 5 2 n 6 2 n >>> df['size'] = df.groupby('c')['type'].transform(len) >>> df c type size 0 1 m 3 1 1 n 3 2 1 o 3 3 2 m 4 4 2 m 4 5 2 n 4 6 2 n 4 """ _shared_docs[ "storage_options" ] = """storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to ``urllib.request.Request`` as header options. For other URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more details, and for more examples on storage options refer `here `_.""" _shared_docs[ "compression_options" ] = """compression : str or dict, default 'infer' For on-the-fly compression of the output data. If 'infer' and '%s' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). Set to ``None`` for no compression. Can also be a dict with key ``'method'`` set to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and other key-value pairs are forwarded to ``zipfile.ZipFile``, ``gzip.GzipFile``, ``bz2.BZ2File``, ``zstandard.ZstdCompressor``, ``lzma.LZMAFile`` or ``tarfile.TarFile``, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``. .. versionadded:: 1.5.0 Added support for `.tar` files.""" _shared_docs[ "decompression_options" ] = """compression : str or dict, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and '%s' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in. Set to ``None`` for no decompression. Can also be a dict with key ``'method'`` set to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and other key-value pairs are forwarded to ``zipfile.ZipFile``, ``gzip.GzipFile``, ``bz2.BZ2File``, ``zstandard.ZstdDecompressor``, ``lzma.LZMAFile`` or ``tarfile.TarFile``, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: ``compression={'method': 'zstd', 'dict_data': my_compression_dict}``. .. versionadded:: 1.5.0 Added support for `.tar` files.""" _shared_docs[ "replace" ] = """ Replace values given in `to_replace` with `value`. Values of the {klass} are replaced with other values dynamically. This differs from updating with ``.loc`` or ``.iloc``, which require you to specify a location to update with some value. Parameters ---------- to_replace : str, regex, list, dict, Series, int, float, or None How to find the values that will be replaced. * numeric, str or regex: - numeric: numeric values equal to `to_replace` will be replaced with `value` - str: string exactly matching `to_replace` will be replaced with `value` - regex: regexs matching `to_replace` will be replaced with `value` * list of str, regex, or numeric: - First, if `to_replace` and `value` are both lists, they **must** be the same length. - Second, if ``regex=True`` then all of the strings in **both** lists will be interpreted as regexs otherwise they will match directly. This doesn't matter much for `value` since there are only a few possible substitution regexes you can use. - str, regex and numeric rules apply as above. * dict: - Dicts can be used to specify different replacement values for different existing values. For example, ``{{'a': 'b', 'y': 'z'}}`` replaces the value 'a' with 'b' and 'y' with 'z'. To use a dict in this way, the optional `value` parameter should not be given. - For a DataFrame a dict can specify that different values should be replaced in different columns. For example, ``{{'a': 1, 'b': 'z'}}`` looks for the value 1 in column 'a' and the value 'z' in column 'b' and replaces these values with whatever is specified in `value`. The `value` parameter should not be ``None`` in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in. - For a DataFrame nested dictionaries, e.g., ``{{'a': {{'b': np.nan}}}}``, are read as follows: look in column 'a' for the value 'b' and replace it with NaN. The optional `value` parameter should not be specified to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) **cannot** be regular expressions. * None: - This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also ``None`` then this **must** be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to replace any values matching `to_replace` with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. {inplace} limit : int, default None Maximum size gap to forward or backward fill. .. deprecated:: 2.1.0 regex : bool or same types as `to_replace`, default False Whether to interpret `to_replace` and/or `value` as regular expressions. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case `to_replace` must be ``None``. method : {{'pad', 'ffill', 'bfill'}} The method to use when for replacement, when `to_replace` is a scalar, list or tuple and `value` is ``None``. .. deprecated:: 2.1.0 Returns ------- {klass} Object after replacement. Raises ------ AssertionError * If `regex` is not a ``bool`` and `to_replace` is not ``None``. TypeError * If `to_replace` is not a scalar, array-like, ``dict``, or ``None`` * If `to_replace` is a ``dict`` and `value` is not a ``list``, ``dict``, ``ndarray``, or ``Series`` * If `to_replace` is ``None`` and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series. * When replacing multiple ``bool`` or ``datetime64`` objects and the arguments to `to_replace` does not match the type of the value being replaced ValueError * If a ``list`` or an ``ndarray`` is passed to `to_replace` and `value` but they are not the same length. See Also -------- Series.fillna : Fill NA values. DataFrame.fillna : Fill NA values. Series.where : Replace values based on boolean condition. DataFrame.where : Replace values based on boolean condition. DataFrame.map: Apply a function to a Dataframe elementwise. Series.map: Map values of Series according to an input mapping or function. Series.str.replace : Simple string replacement. Notes ----- * Regex substitution is performed under the hood with ``re.sub``. The rules for substitution for ``re.sub`` are the same. * Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers *are* strings, then you can do this. * This method has *a lot* of options. You are encouraged to experiment and play with this method to gain intuition about how it works. * When dict is used as the `to_replace` value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter. Examples -------- **Scalar `to_replace` and `value`** >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s.replace(1, 5) 0 5 1 2 2 3 3 4 4 5 dtype: int64 >>> df = pd.DataFrame({{'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e **List-like `to_replace`** >>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e >>> s.replace([1, 2], method='bfill') 0 3 1 3 2 3 3 4 4 5 dtype: int64 **dict-like `to_replace`** >>> df.replace({{0: 10, 1: 100}}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({{'A': 0, 'B': 5}}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({{'A': {{0: 100, 4: 400}}}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e **Regular expression `to_replace`** >>> df = pd.DataFrame({{'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz >>> df.replace({{'A': r'^ba.$'}}, {{'A': 'new'}}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz >>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz >>> df.replace(regex={{r'^ba.$': 'new', 'foo': 'xyz'}}) A B 0 new abc 1 xyz new 2 bait xyz >>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz Compare the behavior of ``s.replace({{'a': None}})`` and ``s.replace('a', None)`` to understand the peculiarities of the `to_replace` parameter: >>> s = pd.Series([10, 'a', 'a', 'b', 'a']) When one uses a dict as the `to_replace` value, it is like the value(s) in the dict are equal to the `value` parameter. ``s.replace({{'a': None}})`` is equivalent to ``s.replace(to_replace={{'a': None}}, value=None, method=None)``: >>> s.replace({{'a': None}}) 0 10 1 None 2 None 3 b 4 None dtype: object When ``value`` is not explicitly passed and `to_replace` is a scalar, list or tuple, `replace` uses the method parameter (default 'pad') to do the replacement. So this is why the 'a' values are being replaced by 10 in rows 1 and 2 and 'b' in row 4 in this case. >>> s.replace('a') 0 10 1 10 2 10 3 b 4 b dtype: object .. deprecated:: 2.1.0 The 'method' parameter and padding behavior are deprecated. On the other hand, if ``None`` is explicitly passed for ``value``, it will be respected: >>> s.replace('a', None) 0 10 1 None 2 None 3 b 4 None dtype: object .. versionchanged:: 1.4.0 Previously the explicit ``None`` was silently ignored. When ``regex=True``, ``value`` is not ``None`` and `to_replace` is a string, the replacement will be applied in all columns of the DataFrame. >>> df = pd.DataFrame({{'A': [0, 1, 2, 3, 4], ... 'B': ['a', 'b', 'c', 'd', 'e'], ... 'C': ['f', 'g', 'h', 'i', 'j']}}) >>> df.replace(to_replace='^[a-g]', value='e', regex=True) A B C 0 0 e e 1 1 e e 2 2 e h 3 3 e i 4 4 e j If ``value`` is not ``None`` and `to_replace` is a dictionary, the dictionary keys will be the DataFrame columns that the replacement will be applied. >>> df.replace(to_replace={{'B': '^[a-c]', 'C': '^[h-j]'}}, value='e', regex=True) A B C 0 0 e f 1 1 e g 2 2 e e 3 3 d e 4 4 e e """ _shared_docs[ "idxmin" ] = """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {{0 or 'index', 1 or 'columns'}}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. numeric_only : bool, default {numeric_only_default} Include only `float`, `int` or `boolean` data. .. versionadded:: 1.5.0 Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin : Return index of the minimum element. Notes ----- This method is the DataFrame version of ``ndarray.argmin``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({{'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the minimum value in each column. >>> df.idxmin() consumption Pork co2_emissions Wheat Products dtype: object To return the index for the minimum value in each row, use ``axis="columns"``. >>> df.idxmin(axis="columns") Pork consumption Wheat Products co2_emissions Beef consumption dtype: object """ _shared_docs[ "idxmax" ] = """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {{0 or 'index', 1 or 'columns'}}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. numeric_only : bool, default {numeric_only_default} Include only `float`, `int` or `boolean` data. .. versionadded:: 1.5.0 Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax : Return index of the maximum element. Notes ----- This method is the DataFrame version of ``ndarray.argmax``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({{'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the maximum value in each column. >>> df.idxmax() consumption Wheat Products co2_emissions Beef dtype: object To return the index for the maximum value in each row, use ``axis="columns"``. >>> df.idxmax(axis="columns") Pork co2_emissions Wheat Products consumption Beef co2_emissions dtype: object """