# being a bit too dynamic from __future__ import annotations from math import ceil from typing import TYPE_CHECKING import warnings from matplotlib import ticker import matplotlib.table import numpy as np from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import is_list_like from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndex, ABCSeries, ) if TYPE_CHECKING: from collections.abc import ( Iterable, Sequence, ) from matplotlib.axes import Axes from matplotlib.axis import Axis from matplotlib.figure import Figure from matplotlib.lines import Line2D from matplotlib.table import Table from pandas import ( DataFrame, Series, ) def do_adjust_figure(fig: Figure) -> bool: """Whether fig has constrained_layout enabled.""" if not hasattr(fig, "get_constrained_layout"): return False return not fig.get_constrained_layout() def maybe_adjust_figure(fig: Figure, *args, **kwargs) -> None: """Call fig.subplots_adjust unless fig has constrained_layout enabled.""" if do_adjust_figure(fig): fig.subplots_adjust(*args, **kwargs) def format_date_labels(ax: Axes, rot) -> None: # mini version of autofmt_xdate for label in ax.get_xticklabels(): label.set_horizontalalignment("right") label.set_rotation(rot) fig = ax.get_figure() if fig is not None: # should always be a Figure but can technically be None maybe_adjust_figure(fig, bottom=0.2) def table( ax, data: DataFrame | Series, rowLabels=None, colLabels=None, **kwargs ) -> Table: if isinstance(data, ABCSeries): data = data.to_frame() elif isinstance(data, ABCDataFrame): pass else: raise ValueError("Input data must be DataFrame or Series") if rowLabels is None: rowLabels = data.index if colLabels is None: colLabels = data.columns cellText = data.values # error: Argument "cellText" to "table" has incompatible type "ndarray[Any, # Any]"; expected "Sequence[Sequence[str]] | None" return matplotlib.table.table( ax, cellText=cellText, # type: ignore[arg-type] rowLabels=rowLabels, colLabels=colLabels, **kwargs, ) def _get_layout( nplots: int, layout: tuple[int, int] | None = None, layout_type: str = "box", ) -> tuple[int, int]: if layout is not None: if not isinstance(layout, (tuple, list)) or len(layout) != 2: raise ValueError("Layout must be a tuple of (rows, columns)") nrows, ncols = layout if nrows == -1 and ncols > 0: layout = nrows, ncols = (ceil(nplots / ncols), ncols) elif ncols == -1 and nrows > 0: layout = nrows, ncols = (nrows, ceil(nplots / nrows)) elif ncols <= 0 and nrows <= 0: msg = "At least one dimension of layout must be positive" raise ValueError(msg) if nrows * ncols < nplots: raise ValueError( f"Layout of {nrows}x{ncols} must be larger than required size {nplots}" ) return layout if layout_type == "single": return (1, 1) elif layout_type == "horizontal": return (1, nplots) elif layout_type == "vertical": return (nplots, 1) layouts = {1: (1, 1), 2: (1, 2), 3: (2, 2), 4: (2, 2)} try: return layouts[nplots] except KeyError: k = 1 while k**2 < nplots: k += 1 if (k - 1) * k >= nplots: return k, (k - 1) else: return k, k # copied from matplotlib/pyplot.py and modified for pandas.plotting def create_subplots( naxes: int, sharex: bool = False, sharey: bool = False, squeeze: bool = True, subplot_kw=None, ax=None, layout=None, layout_type: str = "box", **fig_kw, ): """ Create a figure with a set of subplots already made. This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call. Parameters ---------- naxes : int Number of required axes. Exceeded axes are set invisible. Default is nrows * ncols. sharex : bool If True, the X axis will be shared amongst all subplots. sharey : bool If True, the Y axis will be shared amongst all subplots. squeeze : bool If True, extra dimensions are squeezed out from the returned axis object: - if only one subplot is constructed (nrows=ncols=1), the resulting single Axis object is returned as a scalar. - for Nx1 or 1xN subplots, the returned object is a 1-d numpy object array of Axis objects are returned as numpy 1-d arrays. - for NxM subplots with N>1 and M>1 are returned as a 2d array. If False, no squeezing is done: the returned axis object is always a 2-d array containing Axis instances, even if it ends up being 1x1. subplot_kw : dict Dict with keywords passed to the add_subplot() call used to create each subplots. ax : Matplotlib axis object, optional layout : tuple Number of rows and columns of the subplot grid. If not specified, calculated from naxes and layout_type layout_type : {'box', 'horizontal', 'vertical'}, default 'box' Specify how to layout the subplot grid. fig_kw : Other keyword arguments to be passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns ------- fig, ax : tuple - fig is the Matplotlib Figure object - ax can be either a single axis object or an array of axis objects if more than one subplot was created. The dimensions of the resulting array can be controlled with the squeeze keyword, see above. Examples -------- x = np.linspace(0, 2*np.pi, 400) y = np.sin(x**2) # Just a figure and one subplot f, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Two subplots, unpack the output array immediately f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Four polar axes plt.subplots(2, 2, subplot_kw=dict(polar=True)) """ import matplotlib.pyplot as plt if subplot_kw is None: subplot_kw = {} if ax is None: fig = plt.figure(**fig_kw) else: if is_list_like(ax): if squeeze: ax = flatten_axes(ax) if layout is not None: warnings.warn( "When passing multiple axes, layout keyword is ignored.", UserWarning, stacklevel=find_stack_level(), ) if sharex or sharey: warnings.warn( "When passing multiple axes, sharex and sharey " "are ignored. These settings must be specified when creating axes.", UserWarning, stacklevel=find_stack_level(), ) if ax.size == naxes: fig = ax.flat[0].get_figure() return fig, ax else: raise ValueError( f"The number of passed axes must be {naxes}, the " "same as the output plot" ) fig = ax.get_figure() # if ax is passed and a number of subplots is 1, return ax as it is if naxes == 1: if squeeze: return fig, ax else: return fig, flatten_axes(ax) else: warnings.warn( "To output multiple subplots, the figure containing " "the passed axes is being cleared.", UserWarning, stacklevel=find_stack_level(), ) fig.clear() nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type) nplots = nrows * ncols # Create empty object array to hold all axes. It's easiest to make it 1-d # so we can just append subplots upon creation, and then axarr = np.empty(nplots, dtype=object) # Create first subplot separately, so we can share it if requested ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw) if sharex: subplot_kw["sharex"] = ax0 if sharey: subplot_kw["sharey"] = ax0 axarr[0] = ax0 # Note off-by-one counting because add_subplot uses the MATLAB 1-based # convention. for i in range(1, nplots): kwds = subplot_kw.copy() # Set sharex and sharey to None for blank/dummy axes, these can # interfere with proper axis limits on the visible axes if # they share axes e.g. issue #7528 if i >= naxes: kwds["sharex"] = None kwds["sharey"] = None ax = fig.add_subplot(nrows, ncols, i + 1, **kwds) axarr[i] = ax if naxes != nplots: for ax in axarr[naxes:]: ax.set_visible(False) handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey) if squeeze: # Reshape the array to have the final desired dimension (nrow,ncol), # though discarding unneeded dimensions that equal 1. If we only have # one subplot, just return it instead of a 1-element array. if nplots == 1: axes = axarr[0] else: axes = axarr.reshape(nrows, ncols).squeeze() else: # returned axis array will be always 2-d, even if nrows=ncols=1 axes = axarr.reshape(nrows, ncols) return fig, axes def _remove_labels_from_axis(axis: Axis) -> None: for t in axis.get_majorticklabels(): t.set_visible(False) # set_visible will not be effective if # minor axis has NullLocator and NullFormatter (default) if isinstance(axis.get_minor_locator(), ticker.NullLocator): axis.set_minor_locator(ticker.AutoLocator()) if isinstance(axis.get_minor_formatter(), ticker.NullFormatter): axis.set_minor_formatter(ticker.FormatStrFormatter("")) for t in axis.get_minorticklabels(): t.set_visible(False) axis.get_label().set_visible(False) def _has_externally_shared_axis(ax1: Axes, compare_axis: str) -> bool: """ Return whether an axis is externally shared. Parameters ---------- ax1 : matplotlib.axes.Axes Axis to query. compare_axis : str `"x"` or `"y"` according to whether the X-axis or Y-axis is being compared. Returns ------- bool `True` if the axis is externally shared. Otherwise `False`. Notes ----- If two axes with different positions are sharing an axis, they can be referred to as *externally* sharing the common axis. If two axes sharing an axis also have the same position, they can be referred to as *internally* sharing the common axis (a.k.a twinning). _handle_shared_axes() is only interested in axes externally sharing an axis, regardless of whether either of the axes is also internally sharing with a third axis. """ if compare_axis == "x": axes = ax1.get_shared_x_axes() elif compare_axis == "y": axes = ax1.get_shared_y_axes() else: raise ValueError( "_has_externally_shared_axis() needs 'x' or 'y' as a second parameter" ) axes_siblings = axes.get_siblings(ax1) # Retain ax1 and any of its siblings which aren't in the same position as it ax1_points = ax1.get_position().get_points() for ax2 in axes_siblings: if not np.array_equal(ax1_points, ax2.get_position().get_points()): return True return False def handle_shared_axes( axarr: Iterable[Axes], nplots: int, naxes: int, nrows: int, ncols: int, sharex: bool, sharey: bool, ) -> None: if nplots > 1: row_num = lambda x: x.get_subplotspec().rowspan.start col_num = lambda x: x.get_subplotspec().colspan.start is_first_col = lambda x: x.get_subplotspec().is_first_col() if nrows > 1: try: # first find out the ax layout, # so that we can correctly handle 'gaps" layout = np.zeros((nrows + 1, ncols + 1), dtype=np.bool_) for ax in axarr: layout[row_num(ax), col_num(ax)] = ax.get_visible() for ax in axarr: # only the last row of subplots should get x labels -> all # other off layout handles the case that the subplot is # the last in the column, because below is no subplot/gap. if not layout[row_num(ax) + 1, col_num(ax)]: continue if sharex or _has_externally_shared_axis(ax, "x"): _remove_labels_from_axis(ax.xaxis) except IndexError: # if gridspec is used, ax.rowNum and ax.colNum may different # from layout shape. in this case, use last_row logic is_last_row = lambda x: x.get_subplotspec().is_last_row() for ax in axarr: if is_last_row(ax): continue if sharex or _has_externally_shared_axis(ax, "x"): _remove_labels_from_axis(ax.xaxis) if ncols > 1: for ax in axarr: # only the first column should get y labels -> set all other to # off as we only have labels in the first column and we always # have a subplot there, we can skip the layout test if is_first_col(ax): continue if sharey or _has_externally_shared_axis(ax, "y"): _remove_labels_from_axis(ax.yaxis) def flatten_axes(axes: Axes | Sequence[Axes]) -> np.ndarray: if not is_list_like(axes): return np.array([axes]) elif isinstance(axes, (np.ndarray, ABCIndex)): return np.asarray(axes).ravel() return np.array(axes) def set_ticks_props( axes: Axes | Sequence[Axes], xlabelsize: int | None = None, xrot=None, ylabelsize: int | None = None, yrot=None, ): import matplotlib.pyplot as plt for ax in flatten_axes(axes): if xlabelsize is not None: plt.setp(ax.get_xticklabels(), fontsize=xlabelsize) if xrot is not None: plt.setp(ax.get_xticklabels(), rotation=xrot) if ylabelsize is not None: plt.setp(ax.get_yticklabels(), fontsize=ylabelsize) if yrot is not None: plt.setp(ax.get_yticklabels(), rotation=yrot) return axes def get_all_lines(ax: Axes) -> list[Line2D]: lines = ax.get_lines() if hasattr(ax, "right_ax"): lines += ax.right_ax.get_lines() if hasattr(ax, "left_ax"): lines += ax.left_ax.get_lines() return lines def get_xlim(lines: Iterable[Line2D]) -> tuple[float, float]: left, right = np.inf, -np.inf for line in lines: x = line.get_xdata(orig=False) left = min(np.nanmin(x), left) right = max(np.nanmax(x), right) return left, right