import re import sys import numpy as np import pytest from pandas.compat import PYPY from pandas import ( Categorical, CategoricalDtype, DataFrame, Index, NaT, Series, date_range, ) import pandas._testing as tm from pandas.api.types import is_scalar class TestCategoricalAnalytics: @pytest.mark.parametrize("aggregation", ["min", "max"]) def test_min_max_not_ordered_raises(self, aggregation): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) msg = f"Categorical is not ordered for operation {aggregation}" agg_func = getattr(cat, aggregation) with pytest.raises(TypeError, match=msg): agg_func() ufunc = np.minimum if aggregation == "min" else np.maximum with pytest.raises(TypeError, match=msg): ufunc.reduce(cat) def test_min_max_ordered(self, index_or_series_or_array): cat = Categorical(["a", "b", "c", "d"], ordered=True) obj = index_or_series_or_array(cat) _min = obj.min() _max = obj.max() assert _min == "a" assert _max == "d" assert np.minimum.reduce(obj) == "a" assert np.maximum.reduce(obj) == "d" # TODO: raises if we pass axis=0 (on Index and Categorical, not Series) cat = Categorical( ["a", "b", "c", "d"], categories=["d", "c", "b", "a"], ordered=True ) obj = index_or_series_or_array(cat) _min = obj.min() _max = obj.max() assert _min == "d" assert _max == "a" assert np.minimum.reduce(obj) == "d" assert np.maximum.reduce(obj) == "a" def test_min_max_reduce(self): # GH52788 cat = Categorical(["a", "b", "c", "d"], ordered=True) df = DataFrame(cat) result_max = df.agg("max") expected_max = Series(Categorical(["d"], dtype=cat.dtype)) tm.assert_series_equal(result_max, expected_max) result_min = df.agg("min") expected_min = Series(Categorical(["a"], dtype=cat.dtype)) tm.assert_series_equal(result_min, expected_min) @pytest.mark.parametrize( "categories,expected", [ (list("ABC"), np.nan), ([1, 2, 3], np.nan), pytest.param( Series(date_range("2020-01-01", periods=3), dtype="category"), NaT, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/29962" ), ), ], ) @pytest.mark.parametrize("aggregation", ["min", "max"]) def test_min_max_ordered_empty(self, categories, expected, aggregation): # GH 30227 cat = Categorical([], categories=categories, ordered=True) agg_func = getattr(cat, aggregation) result = agg_func() assert result is expected @pytest.mark.parametrize( "values, categories", [(["a", "b", "c", np.nan], list("cba")), ([1, 2, 3, np.nan], [3, 2, 1])], ) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("function", ["min", "max"]) def test_min_max_with_nan(self, values, categories, function, skipna): # GH 25303 cat = Categorical(values, categories=categories, ordered=True) result = getattr(cat, function)(skipna=skipna) if skipna is False: assert result is np.nan else: expected = categories[0] if function == "min" else categories[2] assert result == expected @pytest.mark.parametrize("function", ["min", "max"]) @pytest.mark.parametrize("skipna", [True, False]) def test_min_max_only_nan(self, function, skipna): # https://github.com/pandas-dev/pandas/issues/33450 cat = Categorical([np.nan], categories=[1, 2], ordered=True) result = getattr(cat, function)(skipna=skipna) assert result is np.nan @pytest.mark.parametrize("method", ["min", "max"]) def test_numeric_only_min_max_raises(self, method): # GH 25303 cat = Categorical( [np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True ) with pytest.raises(TypeError, match=".* got an unexpected keyword"): getattr(cat, method)(numeric_only=True) @pytest.mark.parametrize("method", ["min", "max"]) def test_numpy_min_max_raises(self, method): cat = Categorical(["a", "b", "c", "b"], ordered=False) msg = ( f"Categorical is not ordered for operation {method}\n" "you can use .as_ordered() to change the Categorical to an ordered one" ) method = getattr(np, method) with pytest.raises(TypeError, match=re.escape(msg)): method(cat) @pytest.mark.parametrize("kwarg", ["axis", "out", "keepdims"]) @pytest.mark.parametrize("method", ["min", "max"]) def test_numpy_min_max_unsupported_kwargs_raises(self, method, kwarg): cat = Categorical(["a", "b", "c", "b"], ordered=True) msg = ( f"the '{kwarg}' parameter is not supported in the pandas implementation " f"of {method}" ) if kwarg == "axis": msg = r"`axis` must be fewer than the number of dimensions \(1\)" kwargs = {kwarg: 42} method = getattr(np, method) with pytest.raises(ValueError, match=msg): method(cat, **kwargs) @pytest.mark.parametrize("method, expected", [("min", "a"), ("max", "c")]) def test_numpy_min_max_axis_equals_none(self, method, expected): cat = Categorical(["a", "b", "c", "b"], ordered=True) method = getattr(np, method) result = method(cat, axis=None) assert result == expected @pytest.mark.parametrize( "values,categories,exp_mode", [ ([1, 1, 2, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5]), ([1, 1, 1, 4, 5, 5, 5], [5, 4, 3, 2, 1], [5, 1]), ([1, 2, 3, 4, 5], [5, 4, 3, 2, 1], [5, 4, 3, 2, 1]), ([np.nan, np.nan, np.nan, 4, 5], [5, 4, 3, 2, 1], [5, 4]), ([np.nan, np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]), ([np.nan, np.nan, 4, 5, 4], [5, 4, 3, 2, 1], [4]), ], ) def test_mode(self, values, categories, exp_mode): cat = Categorical(values, categories=categories, ordered=True) res = Series(cat).mode()._values exp = Categorical(exp_mode, categories=categories, ordered=True) tm.assert_categorical_equal(res, exp) def test_searchsorted(self, ordered): # https://github.com/pandas-dev/pandas/issues/8420 # https://github.com/pandas-dev/pandas/issues/14522 cat = Categorical( ["cheese", "milk", "apple", "bread", "bread"], categories=["cheese", "milk", "apple", "bread"], ordered=ordered, ) ser = Series(cat) # Searching for single item argument, side='left' (default) res_cat = cat.searchsorted("apple") assert res_cat == 2 assert is_scalar(res_cat) res_ser = ser.searchsorted("apple") assert res_ser == 2 assert is_scalar(res_ser) # Searching for single item array, side='left' (default) res_cat = cat.searchsorted(["bread"]) res_ser = ser.searchsorted(["bread"]) exp = np.array([3], dtype=np.intp) tm.assert_numpy_array_equal(res_cat, exp) tm.assert_numpy_array_equal(res_ser, exp) # Searching for several items array, side='right' res_cat = cat.searchsorted(["apple", "bread"], side="right") res_ser = ser.searchsorted(["apple", "bread"], side="right") exp = np.array([3, 5], dtype=np.intp) tm.assert_numpy_array_equal(res_cat, exp) tm.assert_numpy_array_equal(res_ser, exp) # Searching for a single value that is not from the Categorical with pytest.raises(TypeError, match="cucumber"): cat.searchsorted("cucumber") with pytest.raises(TypeError, match="cucumber"): ser.searchsorted("cucumber") # Searching for multiple values one of each is not from the Categorical msg = ( "Cannot setitem on a Categorical with a new category, " "set the categories first" ) with pytest.raises(TypeError, match=msg): cat.searchsorted(["bread", "cucumber"]) with pytest.raises(TypeError, match=msg): ser.searchsorted(["bread", "cucumber"]) def test_unique(self, ordered): # GH38140 dtype = CategoricalDtype(["a", "b", "c"], ordered=ordered) # categories are reordered based on value when ordered=False cat = Categorical(["a", "b", "c"], dtype=dtype) res = cat.unique() tm.assert_categorical_equal(res, cat) cat = Categorical(["a", "b", "a", "a"], dtype=dtype) res = cat.unique() tm.assert_categorical_equal(res, Categorical(["a", "b"], dtype=dtype)) cat = Categorical(["c", "a", "b", "a", "a"], dtype=dtype) res = cat.unique() exp_cat = Categorical(["c", "a", "b"], dtype=dtype) tm.assert_categorical_equal(res, exp_cat) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], dtype=dtype) res = cat.unique() exp_cat = Categorical(["b", np.nan, "a"], dtype=dtype) tm.assert_categorical_equal(res, exp_cat) def test_unique_index_series(self, ordered): # GH38140 dtype = CategoricalDtype([3, 2, 1], ordered=ordered) c = Categorical([3, 1, 2, 2, 1], dtype=dtype) # Categorical.unique sorts categories by appearance order # if ordered=False exp = Categorical([3, 1, 2], dtype=dtype) tm.assert_categorical_equal(c.unique(), exp) tm.assert_index_equal(Index(c).unique(), Index(exp)) tm.assert_categorical_equal(Series(c).unique(), exp) c = Categorical([1, 1, 2, 2], dtype=dtype) exp = Categorical([1, 2], dtype=dtype) tm.assert_categorical_equal(c.unique(), exp) tm.assert_index_equal(Index(c).unique(), Index(exp)) tm.assert_categorical_equal(Series(c).unique(), exp) def test_shift(self): # GH 9416 cat = Categorical(["a", "b", "c", "d", "a"]) # shift forward sp1 = cat.shift(1) xp1 = Categorical([np.nan, "a", "b", "c", "d"]) tm.assert_categorical_equal(sp1, xp1) tm.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = Categorical( ["c", "d", "a", np.nan, np.nan], categories=["a", "b", "c", "d"] ) tm.assert_categorical_equal(sn2, xp2) tm.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero tm.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = Categorical([1, 2, 3]) exp = 3 + 3 * 8 # 3 int8s for values + 3 int64s for categories assert cat.nbytes == exp def test_memory_usage(self): cat = Categorical([1, 2, 3]) # .categories is an index, so we include the hashtable assert 0 < cat.nbytes <= cat.memory_usage() assert 0 < cat.nbytes <= cat.memory_usage(deep=True) cat = Categorical(["foo", "foo", "bar"]) assert cat.memory_usage(deep=True) > cat.nbytes if not PYPY: # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) assert abs(diff) < 100 def test_map(self): c = Categorical(list("ABABC"), categories=list("CBA"), ordered=True) result = c.map(lambda x: x.lower(), na_action=None) exp = Categorical(list("ababc"), categories=list("cba"), ordered=True) tm.assert_categorical_equal(result, exp) c = Categorical(list("ABABC"), categories=list("ABC"), ordered=False) result = c.map(lambda x: x.lower(), na_action=None) exp = Categorical(list("ababc"), categories=list("abc"), ordered=False) tm.assert_categorical_equal(result, exp) result = c.map(lambda x: 1, na_action=None) # GH 12766: Return an index not an array tm.assert_index_equal(result, Index(np.array([1] * 5, dtype=np.int64))) @pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0]) def test_validate_inplace_raises(self, value): cat = Categorical(["A", "B", "B", "C", "A"]) msg = ( 'For argument "inplace" expected type bool, ' f"received type {type(value).__name__}" ) with pytest.raises(ValueError, match=msg): cat.sort_values(inplace=value) def test_quantile_empty(self): # make sure we have correct itemsize on resulting codes cat = Categorical(["A", "B"]) idx = Index([0.0, 0.5]) result = cat[:0]._quantile(idx, interpolation="linear") assert result._codes.dtype == np.int8 expected = cat.take([-1, -1], allow_fill=True) tm.assert_extension_array_equal(result, expected)