import re import numpy as np import pytest from pandas.compat import PY311 from pandas import ( Categorical, CategoricalIndex, DataFrame, Index, Series, StringDtype, ) import pandas._testing as tm from pandas.core.arrays.categorical import recode_for_categories class TestCategoricalAPI: def test_to_list_deprecated(self): # GH#51254 cat1 = Categorical(list("acb"), ordered=False) msg = "Categorical.to_list is deprecated and will be removed" with tm.assert_produces_warning(FutureWarning, match=msg): cat1.to_list() def test_ordered_api(self): # GH 9347 cat1 = Categorical(list("acb"), ordered=False) tm.assert_index_equal(cat1.categories, Index(["a", "b", "c"])) assert not cat1.ordered cat2 = Categorical(list("acb"), categories=list("bca"), ordered=False) tm.assert_index_equal(cat2.categories, Index(["b", "c", "a"])) assert not cat2.ordered cat3 = Categorical(list("acb"), ordered=True) tm.assert_index_equal(cat3.categories, Index(["a", "b", "c"])) assert cat3.ordered cat4 = Categorical(list("acb"), categories=list("bca"), ordered=True) tm.assert_index_equal(cat4.categories, Index(["b", "c", "a"])) assert cat4.ordered def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() assert not cat2.ordered cat2 = cat.as_ordered() assert cat2.ordered assert cat2.set_ordered(True).ordered assert not cat2.set_ordered(False).ordered # removed in 0.19.0 msg = ( "property 'ordered' of 'Categorical' object has no setter" if PY311 else "can't set attribute" ) with pytest.raises(AttributeError, match=msg): cat.ordered = True with pytest.raises(AttributeError, match=msg): cat.ordered = False def test_rename_categories(self): cat = Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) tm.assert_numpy_array_equal( res.__array__(), np.array([1, 2, 3, 1], dtype=np.int64) ) tm.assert_index_equal(res.categories, Index([1, 2, 3])) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) exp_cat = Index(["a", "b", "c"]) tm.assert_index_equal(cat.categories, exp_cat) # GH18862 (let rename_categories take callables) result = cat.rename_categories(lambda x: x.upper()) expected = Categorical(["A", "B", "C", "A"]) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]]) def test_rename_categories_wrong_length_raises(self, new_categories): cat = Categorical(["a", "b", "c", "a"]) msg = ( "new categories need to have the same number of items as the " "old categories!" ) with pytest.raises(ValueError, match=msg): cat.rename_categories(new_categories) def test_rename_categories_series(self): # https://github.com/pandas-dev/pandas/issues/17981 c = Categorical(["a", "b"]) result = c.rename_categories(Series([0, 1], index=["a", "b"])) expected = Categorical([0, 1]) tm.assert_categorical_equal(result, expected) def test_rename_categories_dict(self): # GH 17336 cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 4, "b": 3, "c": 2, "d": 1}) expected = Index([4, 3, 2, 1]) tm.assert_index_equal(res.categories, expected) # Test for dicts of smaller length cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 1, "c": 3}) expected = Index([1, "b", 3, "d"]) tm.assert_index_equal(res.categories, expected) # Test for dicts with bigger length cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6}) expected = Index([1, 2, 3, 4]) tm.assert_index_equal(res.categories, expected) # Test for dicts with no items from old categories cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"f": 1, "g": 3}) expected = Index(["a", "b", "c", "d"]) tm.assert_index_equal(res.categories, expected) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical( ["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True ) res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before tm.assert_categorical_equal(cat, old) # only res is changed tm.assert_categorical_equal(res, new) @pytest.mark.parametrize( "new_categories", [ ["a"], # not all "old" included in "new" ["a", "b", "d"], # still not all "old" in "new" ["a", "b", "c", "d"], # all "old" included in "new", but too long ], ) def test_reorder_categories_raises(self, new_categories): cat = Categorical(["a", "b", "c", "a"], ordered=True) msg = "items in new_categories are not the same as in old categories" with pytest.raises(ValueError, match=msg): cat.reorder_categories(new_categories) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical( ["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True ) res = cat.add_categories("d") tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical(list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) tm.assert_categorical_equal(res, expected) def test_add_categories_existing_raises(self): # new is in old categories cat = Categorical(["a", "b", "c", "d"], ordered=True) msg = re.escape("new categories must not include old categories: {'d'}") with pytest.raises(ValueError, match=msg): cat.add_categories(["d"]) def test_add_categories_losing_dtype_information(self): # GH#48812 cat = Categorical(Series([1, 2], dtype="Int64")) ser = Series([4], dtype="Int64") result = cat.add_categories(ser) expected = Categorical( Series([1, 2], dtype="Int64"), categories=Series([1, 2, 4], dtype="Int64") ) tm.assert_categorical_equal(result, expected) cat = Categorical(Series(["a", "b", "a"], dtype=StringDtype())) ser = Series(["d"], dtype=StringDtype()) result = cat.add_categories(ser) expected = Categorical( Series(["a", "b", "a"], dtype=StringDtype()), categories=Series(["a", "b", "d"], dtype=StringDtype()), ) tm.assert_categorical_equal(result, expected) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = Index(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_) cat = cat.set_categories(["c", "b", "a"]) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before tm.assert_index_equal(cat.categories, exp_categories) tm.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = Index(["a", "b", "c"]) tm.assert_index_equal(res.categories, exp_categories_back) tm.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) tm.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0], dtype=np.int8)) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) tm.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0], dtype=np.int8)) tm.assert_index_equal(res.categories, Index(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = Index(["a", "b", "c", "d"]) tm.assert_index_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0], dtype=np.int8)) tm.assert_index_equal(c.categories, Index([1, 2, 3, 4])) exp = np.array([1, 2, 3, 4, 1], dtype=np.int64) tm.assert_numpy_array_equal(np.asarray(c), exp) # all "pointers" to '4' must be changed from 3 to 0,... c = c.set_categories([4, 3, 2, 1]) # positions are changed tm.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3], dtype=np.int8)) # categories are now in new order tm.assert_index_equal(c.categories, Index([4, 3, 2, 1])) # output is the same exp = np.array([1, 2, 3, 4, 1], dtype=np.int64) tm.assert_numpy_array_equal(np.asarray(c), exp) assert c.min() == 4 assert c.max() == 1 # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) assert not c2.ordered tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2)) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) assert not c2.ordered tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2)) @pytest.mark.parametrize( "values, categories, new_categories", [ # No NaNs, same cats, same order (["a", "b", "a"], ["a", "b"], ["a", "b"]), # No NaNs, same cats, different order (["a", "b", "a"], ["a", "b"], ["b", "a"]), # Same, unsorted (["b", "a", "a"], ["a", "b"], ["a", "b"]), # No NaNs, same cats, different order (["b", "a", "a"], ["a", "b"], ["b", "a"]), # NaNs (["a", "b", "c"], ["a", "b"], ["a", "b"]), (["a", "b", "c"], ["a", "b"], ["b", "a"]), (["b", "a", "c"], ["a", "b"], ["a", "b"]), (["b", "a", "c"], ["a", "b"], ["a", "b"]), # Introduce NaNs (["a", "b", "c"], ["a", "b"], ["a"]), (["a", "b", "c"], ["a", "b"], ["b"]), (["b", "a", "c"], ["a", "b"], ["a"]), (["b", "a", "c"], ["a", "b"], ["a"]), # No overlap (["a", "b", "c"], ["a", "b"], ["d", "e"]), ], ) @pytest.mark.parametrize("ordered", [True, False]) def test_set_categories_many(self, values, categories, new_categories, ordered): c = Categorical(values, categories) expected = Categorical(values, new_categories, ordered) result = c.set_categories(new_categories, ordered=ordered) tm.assert_categorical_equal(result, expected) def test_set_categories_rename_less(self): # GH 24675 cat = Categorical(["A", "B"]) result = cat.set_categories(["A"], rename=True) expected = Categorical(["A", np.nan]) tm.assert_categorical_equal(result, expected) def test_set_categories_private(self): cat = Categorical(["a", "b", "c"], categories=["a", "b", "c", "d"]) cat._set_categories(["a", "c", "d", "e"]) expected = Categorical(["a", "c", "d"], categories=list("acde")) tm.assert_categorical_equal(cat, expected) # fastpath cat = Categorical(["a", "b", "c"], categories=["a", "b", "c", "d"]) cat._set_categories(["a", "c", "d", "e"], fastpath=True) expected = Categorical(["a", "c", "d"], categories=list("acde")) tm.assert_categorical_equal(cat, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) res = cat.remove_categories("c") tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) @pytest.mark.parametrize("removals", [["c"], ["c", np.nan], "c", ["c", "c"]]) def test_remove_categories_raises(self, removals): cat = Categorical(["a", "b", "a"]) message = re.escape("removals must all be in old categories: {'c'}") with pytest.raises(ValueError, match=message): cat.remove_categories(removals) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = Index(["a", "b", "c", "d", "e"]) exp_categories_dropped = Index(["a", "b", "c", "d"]) tm.assert_index_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() tm.assert_index_equal(res.categories, exp_categories_dropped) tm.assert_index_equal(c.categories, exp_categories_all) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() tm.assert_index_equal(res.categories, Index(np.array(["a", "b", "c"]))) exp_codes = np.array([0, 1, 2, -1], dtype=np.int8) tm.assert_numpy_array_equal(res.codes, exp_codes) tm.assert_index_equal(c.categories, exp_categories_all) val = ["F", np.nan, "D", "B", "D", "F", np.nan] cat = Categorical(values=val, categories=list("ABCDEFG")) out = cat.remove_unused_categories() tm.assert_index_equal(out.categories, Index(["B", "D", "F"])) exp_codes = np.array([2, -1, 1, 0, 1, 2, -1], dtype=np.int8) tm.assert_numpy_array_equal(out.codes, exp_codes) assert out.tolist() == val alpha = list("abcdefghijklmnopqrstuvwxyz") val = np.random.default_rng(2).choice(alpha[::2], 10000).astype("object") val[np.random.default_rng(2).choice(len(val), 100)] = np.nan cat = Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() assert out.tolist() == val.tolist() class TestCategoricalAPIWithFactor: def test_describe(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True) # string type desc = factor.describe() assert factor.ordered exp_index = CategoricalIndex( ["a", "b", "c"], name="categories", ordered=factor.ordered ) expected = DataFrame( {"counts": [3, 2, 3], "freqs": [3 / 8.0, 2 / 8.0, 3 / 8.0]}, index=exp_index ) tm.assert_frame_equal(desc, expected) # check unused categories cat = factor.copy() cat = cat.set_categories(["a", "b", "c", "d"]) desc = cat.describe() exp_index = CategoricalIndex( list("abcd"), ordered=factor.ordered, name="categories" ) expected = DataFrame( {"counts": [3, 2, 3, 0], "freqs": [3 / 8.0, 2 / 8.0, 3 / 8.0, 0]}, index=exp_index, ) tm.assert_frame_equal(desc, expected) # check an integer one cat = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]) desc = cat.describe() exp_index = CategoricalIndex([1, 2, 3], ordered=cat.ordered, name="categories") expected = DataFrame( {"counts": [5, 3, 3], "freqs": [5 / 11.0, 3 / 11.0, 3 / 11.0]}, index=exp_index, ) tm.assert_frame_equal(desc, expected) # https://github.com/pandas-dev/pandas/issues/3678 # describe should work with NaN cat = Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame( {"counts": [1, 2, 1], "freqs": [1 / 4.0, 2 / 4.0, 1 / 4.0]}, index=CategoricalIndex( [1, 2, np.nan], categories=[1, 2], name="categories" ), ) tm.assert_frame_equal(desc, expected) class TestPrivateCategoricalAPI: def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype="int8") tm.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise msg = ( "property 'codes' of 'Categorical' object has no setter" if PY311 else "can't set attribute" ) with pytest.raises(AttributeError, match=msg): c.codes = np.array([0, 1, 2, 0, 1], dtype="int8") # changes in the codes array should raise codes = c.codes with pytest.raises(ValueError, match="assignment destination is read-only"): codes[4] = 1 # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype="int8") tm.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype="int8") tm.assert_numpy_array_equal(c.codes, exp) @pytest.mark.parametrize( "codes, old, new, expected", [ ([0, 1], ["a", "b"], ["a", "b"], [0, 1]), ([0, 1], ["b", "a"], ["b", "a"], [0, 1]), ([0, 1], ["a", "b"], ["b", "a"], [1, 0]), ([0, 1], ["b", "a"], ["a", "b"], [1, 0]), ([0, 1, 0, 1], ["a", "b"], ["a", "b", "c"], [0, 1, 0, 1]), ([0, 1, 2, 2], ["a", "b", "c"], ["a", "b"], [0, 1, -1, -1]), ([0, 1, -1], ["a", "b", "c"], ["a", "b", "c"], [0, 1, -1]), ([0, 1, -1], ["a", "b", "c"], ["b"], [-1, 0, -1]), ([0, 1, -1], ["a", "b", "c"], ["d"], [-1, -1, -1]), ([0, 1, -1], ["a", "b", "c"], [], [-1, -1, -1]), ([-1, -1], [], ["a", "b"], [-1, -1]), ([1, 0], ["b", "a"], ["a", "b"], [0, 1]), ], ) def test_recode_to_categories(self, codes, old, new, expected): codes = np.asanyarray(codes, dtype=np.int8) expected = np.asanyarray(expected, dtype=np.int8) old = Index(old) new = Index(new) result = recode_for_categories(codes, old, new) tm.assert_numpy_array_equal(result, expected) def test_recode_to_categories_large(self): N = 1000 codes = np.arange(N) old = Index(codes) expected = np.arange(N - 1, -1, -1, dtype=np.int16) new = Index(expected) result = recode_for_categories(codes, old, new) tm.assert_numpy_array_equal(result, expected)