import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timestamp, date_range, ) import pandas._testing as tm class TestCategoricalOpsWithFactor: def test_categories_none_comparisons(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True) tm.assert_categorical_equal(factor, factor) def test_comparisons(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"], ordered=True) result = factor[factor == "a"] expected = factor[np.asarray(factor) == "a"] tm.assert_categorical_equal(result, expected) result = factor[factor != "a"] expected = factor[np.asarray(factor) != "a"] tm.assert_categorical_equal(result, expected) result = factor[factor < "c"] expected = factor[np.asarray(factor) < "c"] tm.assert_categorical_equal(result, expected) result = factor[factor > "a"] expected = factor[np.asarray(factor) > "a"] tm.assert_categorical_equal(result, expected) result = factor[factor >= "b"] expected = factor[np.asarray(factor) >= "b"] tm.assert_categorical_equal(result, expected) result = factor[factor <= "b"] expected = factor[np.asarray(factor) <= "b"] tm.assert_categorical_equal(result, expected) n = len(factor) other = factor[np.random.default_rng(2).permutation(n)] result = factor == other expected = np.asarray(factor) == np.asarray(other) tm.assert_numpy_array_equal(result, expected) result = factor == "d" expected = np.zeros(len(factor), dtype=bool) tm.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True ) cat = Categorical(["a", "b", "c"], ordered=True) cat_base = Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) tm.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) tm.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) tm.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared msg = "Categoricals can only be compared if 'categories' are the same" with pytest.raises(TypeError, match=msg): cat > cat_rev cat_rev_base2 = Categorical(["b", "b", "b"], categories=["c", "b", "a", "d"]) with pytest.raises(TypeError, match=msg): cat_rev > cat_rev_base2 # Only categories with same ordering information can be compared cat_unordered = cat.set_ordered(False) assert not (cat > cat).any() with pytest.raises(TypeError, match=msg): cat > cat_unordered # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"], dtype=object) msg = ( "Cannot compare a Categorical for op __gt__ with type " r"" ) with pytest.raises(TypeError, match=msg): cat > s with pytest.raises(TypeError, match=msg): cat_rev > s with pytest.raises(TypeError, match=msg): s < cat with pytest.raises(TypeError, match=msg): s < cat_rev # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"], dtype=object) with pytest.raises(TypeError, match=msg): cat > a with pytest.raises(TypeError, match=msg): cat_rev > a # Make sure that unequal comparison take the categories order in # account cat_rev = Categorical(list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" tm.assert_numpy_array_equal(res, exp) # check that zero-dim array gets unboxed res = cat_rev > np.array("b") tm.assert_numpy_array_equal(res, exp) class TestCategoricalOps: @pytest.mark.parametrize( "categories", [["a", "b"], [0, 1], [Timestamp("2019"), Timestamp("2020")]], ) def test_not_equal_with_na(self, categories): # https://github.com/pandas-dev/pandas/issues/32276 c1 = Categorical.from_codes([-1, 0], categories=categories) c2 = Categorical.from_codes([0, 1], categories=categories) result = c1 != c2 assert result.all() def test_compare_frame(self): # GH#24282 check that Categorical.__cmp__(DataFrame) defers to frame data = ["a", "b", 2, "a"] cat = Categorical(data) df = DataFrame(cat) result = cat == df.T expected = DataFrame([[True, True, True, True]]) tm.assert_frame_equal(result, expected) result = cat[::-1] != df.T expected = DataFrame([[False, True, True, False]]) tm.assert_frame_equal(result, expected) def test_compare_frame_raises(self, comparison_op): # alignment raises unless we transpose op = comparison_op cat = Categorical(["a", "b", 2, "a"]) df = DataFrame(cat) msg = "Unable to coerce to Series, length must be 1: given 4" with pytest.raises(ValueError, match=msg): op(cat, df) def test_datetime_categorical_comparison(self): dt_cat = Categorical(date_range("2014-01-01", periods=3), ordered=True) tm.assert_numpy_array_equal(dt_cat > dt_cat[0], np.array([False, True, True])) tm.assert_numpy_array_equal(dt_cat[0] < dt_cat, np.array([False, True, True])) def test_reflected_comparison_with_scalars(self): # GH8658 cat = Categorical([1, 2, 3], ordered=True) tm.assert_numpy_array_equal(cat > cat[0], np.array([False, True, True])) tm.assert_numpy_array_equal(cat[0] < cat, np.array([False, True, True])) def test_comparison_with_unknown_scalars(self): # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = Categorical([1, 2, 3], ordered=True) msg = "Invalid comparison between dtype=category and int" with pytest.raises(TypeError, match=msg): cat < 4 with pytest.raises(TypeError, match=msg): cat > 4 with pytest.raises(TypeError, match=msg): 4 < cat with pytest.raises(TypeError, match=msg): 4 > cat tm.assert_numpy_array_equal(cat == 4, np.array([False, False, False])) tm.assert_numpy_array_equal(cat != 4, np.array([True, True, True])) def test_comparison_with_tuple(self): cat = Categorical(np.array(["foo", (0, 1), 3, (0, 1)], dtype=object)) result = cat == "foo" expected = np.array([True, False, False, False], dtype=bool) tm.assert_numpy_array_equal(result, expected) result = cat == (0, 1) expected = np.array([False, True, False, True], dtype=bool) tm.assert_numpy_array_equal(result, expected) result = cat != (0, 1) tm.assert_numpy_array_equal(result, ~expected) @pytest.mark.filterwarnings("ignore::RuntimeWarning") def test_comparison_of_ordered_categorical_with_nan_to_scalar( self, compare_operators_no_eq_ne ): # https://github.com/pandas-dev/pandas/issues/26504 # BUG: fix ordered categorical comparison with missing values (#26504 ) # and following comparisons with scalars in categories with missing # values should be evaluated as False cat = Categorical([1, 2, 3, None], categories=[1, 2, 3], ordered=True) scalar = 2 expected = getattr(np.array(cat), compare_operators_no_eq_ne)(scalar) actual = getattr(cat, compare_operators_no_eq_ne)(scalar) tm.assert_numpy_array_equal(actual, expected) @pytest.mark.filterwarnings("ignore::RuntimeWarning") def test_comparison_of_ordered_categorical_with_nan_to_listlike( self, compare_operators_no_eq_ne ): # https://github.com/pandas-dev/pandas/issues/26504 # and following comparisons of missing values in ordered Categorical # with listlike should be evaluated as False cat = Categorical([1, 2, 3, None], categories=[1, 2, 3], ordered=True) other = Categorical([2, 2, 2, 2], categories=[1, 2, 3], ordered=True) expected = getattr(np.array(cat), compare_operators_no_eq_ne)(2) actual = getattr(cat, compare_operators_no_eq_ne)(other) tm.assert_numpy_array_equal(actual, expected) @pytest.mark.parametrize( "data,reverse,base", [(list("abc"), list("cba"), list("bbb")), ([1, 2, 3], [3, 2, 1], [2, 2, 2])], ) def test_comparisons(self, data, reverse, base): cat_rev = Series(Categorical(data, categories=reverse, ordered=True)) cat_rev_base = Series(Categorical(base, categories=reverse, ordered=True)) cat = Series(Categorical(data, ordered=True)) cat_base = Series( Categorical(base, categories=cat.cat.categories, ordered=True) ) s = Series(base, dtype=object if base == list("bbb") else None) a = np.array(base) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = Series([True, False, False]) tm.assert_series_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = Series([False, False, True]) tm.assert_series_equal(res_rev, exp_rev) res = cat > cat_base exp = Series([False, False, True]) tm.assert_series_equal(res, exp) scalar = base[1] res = cat > scalar exp = Series([False, False, True]) exp2 = cat.values > scalar tm.assert_series_equal(res, exp) tm.assert_numpy_array_equal(res.values, exp2) res_rev = cat_rev > scalar exp_rev = Series([True, False, False]) exp_rev2 = cat_rev.values > scalar tm.assert_series_equal(res_rev, exp_rev) tm.assert_numpy_array_equal(res_rev.values, exp_rev2) # Only categories with same categories can be compared msg = "Categoricals can only be compared if 'categories' are the same" with pytest.raises(TypeError, match=msg): cat > cat_rev # categorical cannot be compared to Series or numpy array, and also # not the other way around msg = ( "Cannot compare a Categorical for op __gt__ with type " r"" ) with pytest.raises(TypeError, match=msg): cat > s with pytest.raises(TypeError, match=msg): cat_rev > s with pytest.raises(TypeError, match=msg): cat > a with pytest.raises(TypeError, match=msg): cat_rev > a with pytest.raises(TypeError, match=msg): s < cat with pytest.raises(TypeError, match=msg): s < cat_rev with pytest.raises(TypeError, match=msg): a < cat with pytest.raises(TypeError, match=msg): a < cat_rev @pytest.mark.parametrize( "ctor", [ lambda *args, **kwargs: Categorical(*args, **kwargs), lambda *args, **kwargs: Series(Categorical(*args, **kwargs)), ], ) def test_unordered_different_order_equal(self, ctor): # https://github.com/pandas-dev/pandas/issues/16014 c1 = ctor(["a", "b"], categories=["a", "b"], ordered=False) c2 = ctor(["a", "b"], categories=["b", "a"], ordered=False) assert (c1 == c2).all() c1 = ctor(["a", "b"], categories=["a", "b"], ordered=False) c2 = ctor(["b", "a"], categories=["b", "a"], ordered=False) assert (c1 != c2).all() c1 = ctor(["a", "a"], categories=["a", "b"], ordered=False) c2 = ctor(["b", "b"], categories=["b", "a"], ordered=False) assert (c1 != c2).all() c1 = ctor(["a", "a"], categories=["a", "b"], ordered=False) c2 = ctor(["a", "b"], categories=["b", "a"], ordered=False) result = c1 == c2 tm.assert_numpy_array_equal(np.array(result), np.array([True, False])) def test_unordered_different_categories_raises(self): c1 = Categorical(["a", "b"], categories=["a", "b"], ordered=False) c2 = Categorical(["a", "c"], categories=["c", "a"], ordered=False) with pytest.raises(TypeError, match=("Categoricals can only be compared")): c1 == c2 def test_compare_different_lengths(self): c1 = Categorical([], categories=["a", "b"]) c2 = Categorical([], categories=["a"]) msg = "Categoricals can only be compared if 'categories' are the same." with pytest.raises(TypeError, match=msg): c1 == c2 def test_compare_unordered_different_order(self): # https://github.com/pandas-dev/pandas/issues/16603#issuecomment- # 349290078 a = Categorical(["a"], categories=["a", "b"]) b = Categorical(["b"], categories=["b", "a"]) assert not a.equals(b) def test_numeric_like_ops(self): df = DataFrame({"value": np.random.default_rng(2).integers(0, 10000, 100)}) labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) # numeric ops should not succeed for op, str_rep in [ ("__add__", r"\+"), ("__sub__", "-"), ("__mul__", r"\*"), ("__truediv__", "/"), ]: msg = f"Series cannot perform the operation {str_rep}|unsupported operand" with pytest.raises(TypeError, match=msg): getattr(df, op)(df) # reduction ops should not succeed (unless specifically defined, e.g. # min/max) s = df["value_group"] for op in ["kurt", "skew", "var", "std", "mean", "sum", "median"]: msg = f"does not support reduction '{op}'" with pytest.raises(TypeError, match=msg): getattr(s, op)(numeric_only=False) def test_numeric_like_ops_series(self): # numpy ops s = Series(Categorical([1, 2, 3, 4])) with pytest.raises(TypeError, match="does not support reduction 'sum'"): np.sum(s) @pytest.mark.parametrize( "op, str_rep", [ ("__add__", r"\+"), ("__sub__", "-"), ("__mul__", r"\*"), ("__truediv__", "/"), ], ) def test_numeric_like_ops_series_arith(self, op, str_rep): # numeric ops on a Series s = Series(Categorical([1, 2, 3, 4])) msg = f"Series cannot perform the operation {str_rep}|unsupported operand" with pytest.raises(TypeError, match=msg): getattr(s, op)(2) def test_numeric_like_ops_series_invalid(self): # invalid ufunc s = Series(Categorical([1, 2, 3, 4])) msg = "Object with dtype category cannot perform the numpy op log" with pytest.raises(TypeError, match=msg): np.log(s)