import string import numpy as np import pytest import pandas as pd from pandas import SparseDtype import pandas._testing as tm from pandas.core.arrays.sparse import SparseArray class TestSeriesAccessor: def test_to_dense(self): ser = pd.Series([0, 1, 0, 10], dtype="Sparse[int64]") result = ser.sparse.to_dense() expected = pd.Series([0, 1, 0, 10]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("attr", ["npoints", "density", "fill_value", "sp_values"]) def test_get_attributes(self, attr): arr = SparseArray([0, 1]) ser = pd.Series(arr) result = getattr(ser.sparse, attr) expected = getattr(arr, attr) assert result == expected def test_from_coo(self): scipy_sparse = pytest.importorskip("scipy.sparse") row = [0, 3, 1, 0] col = [0, 3, 1, 2] data = [4, 5, 7, 9] sp_array = scipy_sparse.coo_matrix((data, (row, col))) result = pd.Series.sparse.from_coo(sp_array) index = pd.MultiIndex.from_arrays( [ np.array([0, 0, 1, 3], dtype=np.int32), np.array([0, 2, 1, 3], dtype=np.int32), ], ) expected = pd.Series([4, 9, 7, 5], index=index, dtype="Sparse[int]") tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "sort_labels, expected_rows, expected_cols, expected_values_pos", [ ( False, [("b", 2), ("a", 2), ("b", 1), ("a", 1)], [("z", 1), ("z", 2), ("x", 2), ("z", 0)], {1: (1, 0), 3: (3, 3)}, ), ( True, [("a", 1), ("a", 2), ("b", 1), ("b", 2)], [("x", 2), ("z", 0), ("z", 1), ("z", 2)], {1: (1, 2), 3: (0, 1)}, ), ], ) def test_to_coo( self, sort_labels, expected_rows, expected_cols, expected_values_pos ): sp_sparse = pytest.importorskip("scipy.sparse") values = SparseArray([0, np.nan, 1, 0, None, 3], fill_value=0) index = pd.MultiIndex.from_tuples( [ ("b", 2, "z", 1), ("a", 2, "z", 2), ("a", 2, "z", 1), ("a", 2, "x", 2), ("b", 1, "z", 1), ("a", 1, "z", 0), ] ) ss = pd.Series(values, index=index) expected_A = np.zeros((4, 4)) for value, (row, col) in expected_values_pos.items(): expected_A[row, col] = value A, rows, cols = ss.sparse.to_coo( row_levels=(0, 1), column_levels=(2, 3), sort_labels=sort_labels ) assert isinstance(A, sp_sparse.coo_matrix) tm.assert_numpy_array_equal(A.toarray(), expected_A) assert rows == expected_rows assert cols == expected_cols def test_non_sparse_raises(self): ser = pd.Series([1, 2, 3]) with pytest.raises(AttributeError, match=".sparse"): ser.sparse.density class TestFrameAccessor: def test_accessor_raises(self): df = pd.DataFrame({"A": [0, 1]}) with pytest.raises(AttributeError, match="sparse"): df.sparse @pytest.mark.parametrize("format", ["csc", "csr", "coo"]) @pytest.mark.parametrize("labels", [None, list(string.ascii_letters[:10])]) @pytest.mark.parametrize("dtype", ["float64", "int64"]) def test_from_spmatrix(self, format, labels, dtype): sp_sparse = pytest.importorskip("scipy.sparse") sp_dtype = SparseDtype(dtype, np.array(0, dtype=dtype).item()) mat = sp_sparse.eye(10, format=format, dtype=dtype) result = pd.DataFrame.sparse.from_spmatrix(mat, index=labels, columns=labels) expected = pd.DataFrame( np.eye(10, dtype=dtype), index=labels, columns=labels ).astype(sp_dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("format", ["csc", "csr", "coo"]) def test_from_spmatrix_including_explicit_zero(self, format): sp_sparse = pytest.importorskip("scipy.sparse") mat = sp_sparse.random(10, 2, density=0.5, format=format) mat.data[0] = 0 result = pd.DataFrame.sparse.from_spmatrix(mat) dtype = SparseDtype("float64", 0.0) expected = pd.DataFrame(mat.todense()).astype(dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "columns", [["a", "b"], pd.MultiIndex.from_product([["A"], ["a", "b"]]), ["a", "a"]], ) def test_from_spmatrix_columns(self, columns): sp_sparse = pytest.importorskip("scipy.sparse") dtype = SparseDtype("float64", 0.0) mat = sp_sparse.random(10, 2, density=0.5) result = pd.DataFrame.sparse.from_spmatrix(mat, columns=columns) expected = pd.DataFrame(mat.toarray(), columns=columns).astype(dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "colnames", [("A", "B"), (1, 2), (1, pd.NA), (0.1, 0.2), ("x", "x"), (0, 0)] ) def test_to_coo(self, colnames): sp_sparse = pytest.importorskip("scipy.sparse") df = pd.DataFrame( {colnames[0]: [0, 1, 0], colnames[1]: [1, 0, 0]}, dtype="Sparse[int64, 0]" ) result = df.sparse.to_coo() expected = sp_sparse.coo_matrix(np.asarray(df)) assert (result != expected).nnz == 0 @pytest.mark.parametrize("fill_value", [1, np.nan]) def test_to_coo_nonzero_fill_val_raises(self, fill_value): pytest.importorskip("scipy") df = pd.DataFrame( { "A": SparseArray( [fill_value, fill_value, fill_value, 2], fill_value=fill_value ), "B": SparseArray( [fill_value, 2, fill_value, fill_value], fill_value=fill_value ), } ) with pytest.raises(ValueError, match="fill value must be 0"): df.sparse.to_coo() def test_to_coo_midx_categorical(self): # GH#50996 sp_sparse = pytest.importorskip("scipy.sparse") midx = pd.MultiIndex.from_arrays( [ pd.CategoricalIndex(list("ab"), name="x"), pd.CategoricalIndex([0, 1], name="y"), ] ) ser = pd.Series(1, index=midx, dtype="Sparse[int]") result = ser.sparse.to_coo(row_levels=["x"], column_levels=["y"])[0] expected = sp_sparse.coo_matrix( (np.array([1, 1]), (np.array([0, 1]), np.array([0, 1]))), shape=(2, 2) ) assert (result != expected).nnz == 0 def test_to_dense(self): df = pd.DataFrame( { "A": SparseArray([1, 0], dtype=SparseDtype("int64", 0)), "B": SparseArray([1, 0], dtype=SparseDtype("int64", 1)), "C": SparseArray([1.0, 0.0], dtype=SparseDtype("float64", 0.0)), }, index=["b", "a"], ) result = df.sparse.to_dense() expected = pd.DataFrame( {"A": [1, 0], "B": [1, 0], "C": [1.0, 0.0]}, index=["b", "a"] ) tm.assert_frame_equal(result, expected) def test_density(self): df = pd.DataFrame( { "A": SparseArray([1, 0, 2, 1], fill_value=0), "B": SparseArray([0, 1, 1, 1], fill_value=0), } ) res = df.sparse.density expected = 0.75 assert res == expected @pytest.mark.parametrize("dtype", ["int64", "float64"]) @pytest.mark.parametrize("dense_index", [True, False]) def test_series_from_coo(self, dtype, dense_index): sp_sparse = pytest.importorskip("scipy.sparse") A = sp_sparse.eye(3, format="coo", dtype=dtype) result = pd.Series.sparse.from_coo(A, dense_index=dense_index) index = pd.MultiIndex.from_tuples( [ np.array([0, 0], dtype=np.int32), np.array([1, 1], dtype=np.int32), np.array([2, 2], dtype=np.int32), ], ) expected = pd.Series(SparseArray(np.array([1, 1, 1], dtype=dtype)), index=index) if dense_index: expected = expected.reindex(pd.MultiIndex.from_product(index.levels)) tm.assert_series_equal(result, expected) def test_series_from_coo_incorrect_format_raises(self): # gh-26554 sp_sparse = pytest.importorskip("scipy.sparse") m = sp_sparse.csr_matrix(np.array([[0, 1], [0, 0]])) with pytest.raises( TypeError, match="Expected coo_matrix. Got csr_matrix instead." ): pd.Series.sparse.from_coo(m) def test_with_column_named_sparse(self): # https://github.com/pandas-dev/pandas/issues/30758 df = pd.DataFrame({"sparse": pd.arrays.SparseArray([1, 2])}) assert isinstance(df.sparse, pd.core.arrays.sparse.accessor.SparseFrameAccessor)