import numpy as np import pytest from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm from pandas.tests.copy_view.util import get_array # ----------------------------------------------------------------------------- # Copy/view behaviour for accessing underlying array of Series/DataFrame @pytest.mark.parametrize( "method", [lambda ser: ser.values, lambda ser: np.asarray(ser)], ids=["values", "asarray"], ) def test_series_values(using_copy_on_write, method): ser = Series([1, 2, 3], name="name") ser_orig = ser.copy() arr = method(ser) if using_copy_on_write: # .values still gives a view but is read-only assert np.shares_memory(arr, get_array(ser, "name")) assert arr.flags.writeable is False # mutating series through arr therefore doesn't work with pytest.raises(ValueError, match="read-only"): arr[0] = 0 tm.assert_series_equal(ser, ser_orig) # mutating the series itself still works ser.iloc[0] = 0 assert ser.values[0] == 0 else: assert arr.flags.writeable is True arr[0] = 0 assert ser.iloc[0] == 0 @pytest.mark.parametrize( "method", [lambda df: df.values, lambda df: np.asarray(df)], ids=["values", "asarray"], ) def test_dataframe_values(using_copy_on_write, using_array_manager, method): df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) df_orig = df.copy() arr = method(df) if using_copy_on_write: # .values still gives a view but is read-only assert np.shares_memory(arr, get_array(df, "a")) assert arr.flags.writeable is False # mutating series through arr therefore doesn't work with pytest.raises(ValueError, match="read-only"): arr[0, 0] = 0 tm.assert_frame_equal(df, df_orig) # mutating the series itself still works df.iloc[0, 0] = 0 assert df.values[0, 0] == 0 else: assert arr.flags.writeable is True arr[0, 0] = 0 if not using_array_manager: assert df.iloc[0, 0] == 0 else: tm.assert_frame_equal(df, df_orig) def test_series_to_numpy(using_copy_on_write): ser = Series([1, 2, 3], name="name") ser_orig = ser.copy() # default: copy=False, no dtype or NAs arr = ser.to_numpy() if using_copy_on_write: # to_numpy still gives a view but is read-only assert np.shares_memory(arr, get_array(ser, "name")) assert arr.flags.writeable is False # mutating series through arr therefore doesn't work with pytest.raises(ValueError, match="read-only"): arr[0] = 0 tm.assert_series_equal(ser, ser_orig) # mutating the series itself still works ser.iloc[0] = 0 assert ser.values[0] == 0 else: assert arr.flags.writeable is True arr[0] = 0 assert ser.iloc[0] == 0 # specify copy=False gives a writeable array ser = Series([1, 2, 3], name="name") arr = ser.to_numpy(copy=True) assert not np.shares_memory(arr, get_array(ser, "name")) assert arr.flags.writeable is True # specifying a dtype that already causes a copy also gives a writeable array ser = Series([1, 2, 3], name="name") arr = ser.to_numpy(dtype="float64") assert not np.shares_memory(arr, get_array(ser, "name")) assert arr.flags.writeable is True @pytest.mark.parametrize("order", ["F", "C"]) def test_ravel_read_only(using_copy_on_write, order): ser = Series([1, 2, 3]) with tm.assert_produces_warning(FutureWarning, match="is deprecated"): arr = ser.ravel(order=order) if using_copy_on_write: assert arr.flags.writeable is False assert np.shares_memory(get_array(ser), arr) def test_series_array_ea_dtypes(using_copy_on_write): ser = Series([1, 2, 3], dtype="Int64") arr = np.asarray(ser, dtype="int64") assert np.shares_memory(arr, get_array(ser)) if using_copy_on_write: assert arr.flags.writeable is False else: assert arr.flags.writeable is True arr = np.asarray(ser) assert np.shares_memory(arr, get_array(ser)) if using_copy_on_write: assert arr.flags.writeable is False else: assert arr.flags.writeable is True def test_dataframe_array_ea_dtypes(using_copy_on_write): df = DataFrame({"a": [1, 2, 3]}, dtype="Int64") arr = np.asarray(df, dtype="int64") assert np.shares_memory(arr, get_array(df, "a")) if using_copy_on_write: assert arr.flags.writeable is False else: assert arr.flags.writeable is True arr = np.asarray(df) assert np.shares_memory(arr, get_array(df, "a")) if using_copy_on_write: assert arr.flags.writeable is False else: assert arr.flags.writeable is True def test_dataframe_array_string_dtype(using_copy_on_write, using_array_manager): df = DataFrame({"a": ["a", "b"]}, dtype="string") arr = np.asarray(df) if not using_array_manager: assert np.shares_memory(arr, get_array(df, "a")) if using_copy_on_write: assert arr.flags.writeable is False else: assert arr.flags.writeable is True def test_dataframe_multiple_numpy_dtypes(): df = DataFrame({"a": [1, 2, 3], "b": 1.5}) arr = np.asarray(df) assert not np.shares_memory(arr, get_array(df, "a")) assert arr.flags.writeable is True def test_values_is_ea(using_copy_on_write): df = DataFrame({"a": date_range("2012-01-01", periods=3)}) arr = np.asarray(df) if using_copy_on_write: assert arr.flags.writeable is False else: assert arr.flags.writeable is True def test_empty_dataframe(): df = DataFrame() arr = np.asarray(df) assert arr.flags.writeable is True