""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ import string import numpy as np import pytest from pandas._config import using_pyarrow_string_dtype import pandas as pd from pandas import Categorical import pandas._testing as tm from pandas.api.types import CategoricalDtype from pandas.tests.extension import base def make_data(): while True: values = np.random.default_rng(2).choice(list(string.ascii_letters), size=100) # ensure we meet the requirements # 1. first two not null # 2. first and second are different if values[0] != values[1]: break return values @pytest.fixture def dtype(): return CategoricalDtype() @pytest.fixture def data(): """Length-100 array for this type. * data[0] and data[1] should both be non missing * data[0] and data[1] should not be equal """ return Categorical(make_data()) @pytest.fixture def data_missing(): """Length 2 array with [NA, Valid]""" return Categorical([np.nan, "A"]) @pytest.fixture def data_for_sorting(): return Categorical(["A", "B", "C"], categories=["C", "A", "B"], ordered=True) @pytest.fixture def data_missing_for_sorting(): return Categorical(["A", None, "B"], categories=["B", "A"], ordered=True) @pytest.fixture def data_for_grouping(): return Categorical(["a", "a", None, None, "b", "b", "a", "c"]) class TestCategorical(base.ExtensionTests): @pytest.mark.xfail(reason="Memory usage doesn't match") def test_memory_usage(self, data): # TODO: Is this deliberate? super().test_memory_usage(data) def test_contains(self, data, data_missing): # GH-37867 # na value handling in Categorical.__contains__ is deprecated. # See base.BaseInterFaceTests.test_contains for more details. na_value = data.dtype.na_value # ensure data without missing values data = data[~data.isna()] # first elements are non-missing assert data[0] in data assert data_missing[0] in data_missing # check the presence of na_value assert na_value in data_missing assert na_value not in data # Categoricals can contain other nan-likes than na_value for na_value_obj in tm.NULL_OBJECTS: if na_value_obj is na_value: continue assert na_value_obj not in data # this section suffers from super method if not using_pyarrow_string_dtype(): assert na_value_obj in data_missing def test_empty(self, dtype): cls = dtype.construct_array_type() result = cls._empty((4,), dtype=dtype) assert isinstance(result, cls) # the dtype we passed is not initialized, so will not match the # dtype on our result. assert result.dtype == CategoricalDtype([]) @pytest.mark.skip(reason="Backwards compatibility") def test_getitem_scalar(self, data): # CategoricalDtype.type isn't "correct" since it should # be a parent of the elements (object). But don't want # to break things by changing. super().test_getitem_scalar(data) @pytest.mark.xfail(reason="Unobserved categories included") def test_value_counts(self, all_data, dropna): return super().test_value_counts(all_data, dropna) def test_combine_add(self, data_repeated): # GH 20825 # When adding categoricals in combine, result is a string orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 + x2) expected = pd.Series( [a + b for (a, b) in zip(list(orig_data1), list(orig_data2))] ) tm.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 + x2) expected = pd.Series([a + val for a in list(orig_data1)]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("na_action", [None, "ignore"]) def test_map(self, data, na_action): result = data.map(lambda x: x, na_action=na_action) tm.assert_extension_array_equal(result, data) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request): # frame & scalar op_name = all_arithmetic_operators if op_name == "__rmod__": request.applymarker( pytest.mark.xfail( reason="rmod never called when string is first argument" ) ) super().test_arith_frame_with_scalar(data, op_name) def test_arith_series_with_scalar(self, data, all_arithmetic_operators, request): op_name = all_arithmetic_operators if op_name == "__rmod__": request.applymarker( pytest.mark.xfail( reason="rmod never called when string is first argument" ) ) super().test_arith_series_with_scalar(data, op_name) def _compare_other(self, ser: pd.Series, data, op, other): op_name = f"__{op.__name__}__" if op_name not in ["__eq__", "__ne__"]: msg = "Unordered Categoricals can only compare equality or not" with pytest.raises(TypeError, match=msg): op(data, other) else: return super()._compare_other(ser, data, op, other) @pytest.mark.xfail(reason="Categorical overrides __repr__") @pytest.mark.parametrize("size", ["big", "small"]) def test_array_repr(self, data, size): super().test_array_repr(data, size) @pytest.mark.xfail(reason="TBD") @pytest.mark.parametrize("as_index", [True, False]) def test_groupby_extension_agg(self, as_index, data_for_grouping): super().test_groupby_extension_agg(as_index, data_for_grouping) class Test2DCompat(base.NDArrayBacked2DTests): def test_repr_2d(self, data): # Categorical __repr__ doesn't include "Categorical", so we need # to special-case res = repr(data.reshape(1, -1)) assert res.count("\nCategories") == 1 res = repr(data.reshape(-1, 1)) assert res.count("\nCategories") == 1