""" Tests for DataFrame.mask; tests DataFrame.where as a side-effect. """ import numpy as np from pandas import ( NA, DataFrame, Float64Dtype, Series, StringDtype, Timedelta, isna, ) import pandas._testing as tm class TestDataFrameMask: def test_mask(self): df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) cond = df > 0 rs = df.where(cond, np.nan) tm.assert_frame_equal(rs, df.mask(df <= 0)) tm.assert_frame_equal(rs, df.mask(~cond)) other = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) rs = df.where(cond, other) tm.assert_frame_equal(rs, df.mask(df <= 0, other)) tm.assert_frame_equal(rs, df.mask(~cond, other)) def test_mask2(self): # see GH#21891 df = DataFrame([1, 2]) res = df.mask([[True], [False]]) exp = DataFrame([np.nan, 2]) tm.assert_frame_equal(res, exp) def test_mask_inplace(self): # GH#8801 df = DataFrame(np.random.default_rng(2).standard_normal((5, 3))) cond = df > 0 rdf = df.copy() return_value = rdf.where(cond, inplace=True) assert return_value is None tm.assert_frame_equal(rdf, df.where(cond)) tm.assert_frame_equal(rdf, df.mask(~cond)) rdf = df.copy() return_value = rdf.where(cond, -df, inplace=True) assert return_value is None tm.assert_frame_equal(rdf, df.where(cond, -df)) tm.assert_frame_equal(rdf, df.mask(~cond, -df)) def test_mask_edge_case_1xN_frame(self): # GH#4071 df = DataFrame([[1, 2]]) res = df.mask(DataFrame([[True, False]])) expec = DataFrame([[np.nan, 2]]) tm.assert_frame_equal(res, expec) def test_mask_callable(self): # GH#12533 df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) result = df.mask(lambda x: x > 4, lambda x: x + 1) exp = DataFrame([[1, 2, 3], [4, 6, 7], [8, 9, 10]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.mask(df > 4, df + 1)) # return ndarray and scalar result = df.mask(lambda x: (x % 2 == 0).values, lambda x: 99) exp = DataFrame([[1, 99, 3], [99, 5, 99], [7, 99, 9]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, df.mask(df % 2 == 0, 99)) # chain result = (df + 2).mask(lambda x: x > 8, lambda x: x + 10) exp = DataFrame([[3, 4, 5], [6, 7, 8], [19, 20, 21]]) tm.assert_frame_equal(result, exp) tm.assert_frame_equal(result, (df + 2).mask((df + 2) > 8, (df + 2) + 10)) def test_mask_dtype_bool_conversion(self): # GH#3733 df = DataFrame(data=np.random.default_rng(2).standard_normal((100, 50))) df = df.where(df > 0) # create nans bools = df > 0 mask = isna(df) expected = bools.astype(object).mask(mask) result = bools.mask(mask) tm.assert_frame_equal(result, expected) def test_mask_stringdtype(frame_or_series): # GH 40824 obj = DataFrame( {"A": ["foo", "bar", "baz", NA]}, index=["id1", "id2", "id3", "id4"], dtype=StringDtype(), ) filtered_obj = DataFrame( {"A": ["this", "that"]}, index=["id2", "id3"], dtype=StringDtype() ) expected = DataFrame( {"A": [NA, "this", "that", NA]}, index=["id1", "id2", "id3", "id4"], dtype=StringDtype(), ) if frame_or_series is Series: obj = obj["A"] filtered_obj = filtered_obj["A"] expected = expected["A"] filter_ser = Series([False, True, True, False]) result = obj.mask(filter_ser, filtered_obj) tm.assert_equal(result, expected) def test_mask_where_dtype_timedelta(): # https://github.com/pandas-dev/pandas/issues/39548 df = DataFrame([Timedelta(i, unit="d") for i in range(5)]) expected = DataFrame(np.full(5, np.nan, dtype="timedelta64[ns]")) tm.assert_frame_equal(df.mask(df.notna()), expected) expected = DataFrame( [np.nan, np.nan, np.nan, Timedelta("3 day"), Timedelta("4 day")] ) tm.assert_frame_equal(df.where(df > Timedelta(2, unit="d")), expected) def test_mask_return_dtype(): # GH#50488 ser = Series([0.0, 1.0, 2.0, 3.0], dtype=Float64Dtype()) cond = ~ser.isna() other = Series([True, False, True, False]) excepted = Series([1.0, 0.0, 1.0, 0.0], dtype=ser.dtype) result = ser.mask(cond, other) tm.assert_series_equal(result, excepted) def test_mask_inplace_no_other(): # GH#51685 df = DataFrame({"a": [1.0, 2.0], "b": ["x", "y"]}) cond = DataFrame({"a": [True, False], "b": [False, True]}) df.mask(cond, inplace=True) expected = DataFrame({"a": [np.nan, 2], "b": ["x", np.nan]}) tm.assert_frame_equal(df, expected)