import numpy as np from pandas import ( DataFrame, MultiIndex, Series, ) import pandas._testing as tm class TestDataFramePop: def test_pop(self, float_frame, warn_copy_on_write): float_frame.columns.name = "baz" float_frame.pop("A") assert "A" not in float_frame float_frame["foo"] = "bar" float_frame.pop("foo") assert "foo" not in float_frame assert float_frame.columns.name == "baz" # gh-10912: inplace ops cause caching issue a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"]) b = a.pop("B") with tm.assert_cow_warning(warn_copy_on_write): b += 1 # original frame expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"]) tm.assert_frame_equal(a, expected) # result expected = Series([2, 5], index=["X", "Y"], name="B") + 1 tm.assert_series_equal(b, expected) def test_pop_non_unique_cols(self): df = DataFrame({0: [0, 1], 1: [0, 1], 2: [4, 5]}) df.columns = ["a", "b", "a"] res = df.pop("a") assert type(res) == DataFrame assert len(res) == 2 assert len(df.columns) == 1 assert "b" in df.columns assert "a" not in df.columns assert len(df.index) == 2 def test_mixed_depth_pop(self): arrays = [ ["a", "top", "top", "routine1", "routine1", "routine2"], ["", "OD", "OD", "result1", "result2", "result1"], ["", "wx", "wy", "", "", ""], ] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index) df1 = df.copy() df2 = df.copy() result = df1.pop("a") expected = df2.pop(("a", "", "")) tm.assert_series_equal(expected, result, check_names=False) tm.assert_frame_equal(df1, df2) assert result.name == "a" expected = df1["top"] df1 = df1.drop(["top"], axis=1) result = df2.pop("top") tm.assert_frame_equal(expected, result) tm.assert_frame_equal(df1, df2)