import numpy as np import pytest from pandas.core.dtypes.common import ensure_platform_int import pandas as pd from pandas import ( Index, RangeIndex, ) import pandas._testing as tm class TestRangeIndex: @pytest.fixture def simple_index(self): return RangeIndex(start=0, stop=20, step=2) def test_constructor_unwraps_index(self): result = RangeIndex(1, 3) expected = np.array([1, 2], dtype=np.int64) tm.assert_numpy_array_equal(result._data, expected) def test_can_hold_identifiers(self, simple_index): idx = simple_index key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is False def test_too_many_names(self, simple_index): index = simple_index with pytest.raises(ValueError, match="^Length"): index.names = ["roger", "harold"] @pytest.mark.parametrize( "index, start, stop, step", [ (RangeIndex(5), 0, 5, 1), (RangeIndex(0, 5), 0, 5, 1), (RangeIndex(5, step=2), 0, 5, 2), (RangeIndex(1, 5, 2), 1, 5, 2), ], ) def test_start_stop_step_attrs(self, index, start, stop, step): # GH 25710 assert index.start == start assert index.stop == stop assert index.step == step def test_copy(self): i = RangeIndex(5, name="Foo") i_copy = i.copy() assert i_copy is not i assert i_copy.identical(i) assert i_copy._range == range(0, 5, 1) assert i_copy.name == "Foo" def test_repr(self): i = RangeIndex(5, name="Foo") result = repr(i) expected = "RangeIndex(start=0, stop=5, step=1, name='Foo')" assert result == expected result = eval(result) tm.assert_index_equal(result, i, exact=True) i = RangeIndex(5, 0, -1) result = repr(i) expected = "RangeIndex(start=5, stop=0, step=-1)" assert result == expected result = eval(result) tm.assert_index_equal(result, i, exact=True) def test_insert(self): idx = RangeIndex(5, name="Foo") result = idx[1:4] # test 0th element tm.assert_index_equal(idx[0:4], result.insert(0, idx[0]), exact="equiv") # GH 18295 (test missing) expected = Index([0, np.nan, 1, 2, 3, 4], dtype=np.float64) for na in [np.nan, None, pd.NA]: result = RangeIndex(5).insert(1, na) tm.assert_index_equal(result, expected) result = RangeIndex(5).insert(1, pd.NaT) expected = Index([0, pd.NaT, 1, 2, 3, 4], dtype=object) tm.assert_index_equal(result, expected) def test_insert_edges_preserves_rangeindex(self): idx = Index(range(4, 9, 2)) result = idx.insert(0, 2) expected = Index(range(2, 9, 2)) tm.assert_index_equal(result, expected, exact=True) result = idx.insert(3, 10) expected = Index(range(4, 11, 2)) tm.assert_index_equal(result, expected, exact=True) def test_insert_middle_preserves_rangeindex(self): # insert in the middle idx = Index(range(0, 3, 2)) result = idx.insert(1, 1) expected = Index(range(3)) tm.assert_index_equal(result, expected, exact=True) idx = idx * 2 result = idx.insert(1, 2) expected = expected * 2 tm.assert_index_equal(result, expected, exact=True) def test_delete(self): idx = RangeIndex(5, name="Foo") expected = idx[1:] result = idx.delete(0) tm.assert_index_equal(result, expected, exact=True) assert result.name == expected.name expected = idx[:-1] result = idx.delete(-1) tm.assert_index_equal(result, expected, exact=True) assert result.name == expected.name msg = "index 5 is out of bounds for axis 0 with size 5" with pytest.raises((IndexError, ValueError), match=msg): # either depending on numpy version result = idx.delete(len(idx)) def test_delete_preserves_rangeindex(self): idx = Index(range(2), name="foo") result = idx.delete([1]) expected = Index(range(1), name="foo") tm.assert_index_equal(result, expected, exact=True) result = idx.delete(1) tm.assert_index_equal(result, expected, exact=True) def test_delete_preserves_rangeindex_middle(self): idx = Index(range(3), name="foo") result = idx.delete(1) expected = idx[::2] tm.assert_index_equal(result, expected, exact=True) result = idx.delete(-2) tm.assert_index_equal(result, expected, exact=True) def test_delete_preserves_rangeindex_list_at_end(self): idx = RangeIndex(0, 6, 1) loc = [2, 3, 4, 5] result = idx.delete(loc) expected = idx[:2] tm.assert_index_equal(result, expected, exact=True) result = idx.delete(loc[::-1]) tm.assert_index_equal(result, expected, exact=True) def test_delete_preserves_rangeindex_list_middle(self): idx = RangeIndex(0, 6, 1) loc = [1, 2, 3, 4] result = idx.delete(loc) expected = RangeIndex(0, 6, 5) tm.assert_index_equal(result, expected, exact=True) result = idx.delete(loc[::-1]) tm.assert_index_equal(result, expected, exact=True) def test_delete_all_preserves_rangeindex(self): idx = RangeIndex(0, 6, 1) loc = [0, 1, 2, 3, 4, 5] result = idx.delete(loc) expected = idx[:0] tm.assert_index_equal(result, expected, exact=True) result = idx.delete(loc[::-1]) tm.assert_index_equal(result, expected, exact=True) def test_delete_not_preserving_rangeindex(self): idx = RangeIndex(0, 6, 1) loc = [0, 3, 5] result = idx.delete(loc) expected = Index([1, 2, 4]) tm.assert_index_equal(result, expected, exact=True) result = idx.delete(loc[::-1]) tm.assert_index_equal(result, expected, exact=True) def test_view(self): i = RangeIndex(0, name="Foo") i_view = i.view() assert i_view.name == "Foo" i_view = i.view("i8") tm.assert_numpy_array_equal(i.values, i_view) msg = "Passing a type in RangeIndex.view is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): i_view = i.view(RangeIndex) tm.assert_index_equal(i, i_view) def test_dtype(self, simple_index): index = simple_index assert index.dtype == np.int64 def test_cache(self): # GH 26565, GH26617, GH35432, GH53387 # This test checks whether _cache has been set. # Calling RangeIndex._cache["_data"] creates an int64 array of the same length # as the RangeIndex and stores it in _cache. idx = RangeIndex(0, 100, 10) assert idx._cache == {} repr(idx) assert idx._cache == {} str(idx) assert idx._cache == {} idx.get_loc(20) assert idx._cache == {} 90 in idx # True assert idx._cache == {} 91 in idx # False assert idx._cache == {} idx.all() assert idx._cache == {} idx.any() assert idx._cache == {} for _ in idx: pass assert idx._cache == {} msg = "RangeIndex.format is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): idx.format() assert idx._cache == {} df = pd.DataFrame({"a": range(10)}, index=idx) # df.__repr__ should not populate index cache str(df) assert idx._cache == {} df.loc[50] assert idx._cache == {} with pytest.raises(KeyError, match="51"): df.loc[51] assert idx._cache == {} df.loc[10:50] assert idx._cache == {} df.iloc[5:10] assert idx._cache == {} # after calling take, _cache may contain other keys, but not "_data" idx.take([3, 0, 1]) assert "_data" not in idx._cache df.loc[[50]] assert "_data" not in idx._cache df.iloc[[5, 6, 7, 8, 9]] assert "_data" not in idx._cache # idx._cache should contain a _data entry after call to idx._data idx._data assert isinstance(idx._data, np.ndarray) assert idx._data is idx._data # check cached value is reused assert "_data" in idx._cache expected = np.arange(0, 100, 10, dtype="int64") tm.assert_numpy_array_equal(idx._cache["_data"], expected) def test_is_monotonic(self): index = RangeIndex(0, 20, 2) assert index.is_monotonic_increasing is True assert index.is_monotonic_increasing is True assert index.is_monotonic_decreasing is False assert index._is_strictly_monotonic_increasing is True assert index._is_strictly_monotonic_decreasing is False index = RangeIndex(4, 0, -1) assert index.is_monotonic_increasing is False assert index._is_strictly_monotonic_increasing is False assert index.is_monotonic_decreasing is True assert index._is_strictly_monotonic_decreasing is True index = RangeIndex(1, 2) assert index.is_monotonic_increasing is True assert index.is_monotonic_increasing is True assert index.is_monotonic_decreasing is True assert index._is_strictly_monotonic_increasing is True assert index._is_strictly_monotonic_decreasing is True index = RangeIndex(2, 1) assert index.is_monotonic_increasing is True assert index.is_monotonic_increasing is True assert index.is_monotonic_decreasing is True assert index._is_strictly_monotonic_increasing is True assert index._is_strictly_monotonic_decreasing is True index = RangeIndex(1, 1) assert index.is_monotonic_increasing is True assert index.is_monotonic_increasing is True assert index.is_monotonic_decreasing is True assert index._is_strictly_monotonic_increasing is True assert index._is_strictly_monotonic_decreasing is True @pytest.mark.parametrize( "left,right", [ (RangeIndex(0, 9, 2), RangeIndex(0, 10, 2)), (RangeIndex(0), RangeIndex(1, -1, 3)), (RangeIndex(1, 2, 3), RangeIndex(1, 3, 4)), (RangeIndex(0, -9, -2), RangeIndex(0, -10, -2)), ], ) def test_equals_range(self, left, right): assert left.equals(right) assert right.equals(left) def test_logical_compat(self, simple_index): idx = simple_index assert idx.all() == idx.values.all() assert idx.any() == idx.values.any() def test_identical(self, simple_index): index = simple_index i = Index(index.copy()) assert i.identical(index) # we don't allow object dtype for RangeIndex if isinstance(index, RangeIndex): return same_values_different_type = Index(i, dtype=object) assert not i.identical(same_values_different_type) i = index.copy(dtype=object) i = i.rename("foo") same_values = Index(i, dtype=object) assert same_values.identical(index.copy(dtype=object)) assert not i.identical(index) assert Index(same_values, name="foo", dtype=object).identical(i) assert not index.copy(dtype=object).identical(index.copy(dtype="int64")) def test_nbytes(self): # memory savings vs int index idx = RangeIndex(0, 1000) assert idx.nbytes < Index(idx._values).nbytes / 10 # constant memory usage i2 = RangeIndex(0, 10) assert idx.nbytes == i2.nbytes @pytest.mark.parametrize( "start,stop,step", [ # can't ("foo", "bar", "baz"), # shouldn't ("0", "1", "2"), ], ) def test_cant_or_shouldnt_cast(self, start, stop, step): msg = f"Wrong type {type(start)} for value {start}" with pytest.raises(TypeError, match=msg): RangeIndex(start, stop, step) def test_view_index(self, simple_index): index = simple_index msg = "Passing a type in RangeIndex.view is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): index.view(Index) def test_prevent_casting(self, simple_index): index = simple_index result = index.astype("O") assert result.dtype == np.object_ def test_repr_roundtrip(self, simple_index): index = simple_index tm.assert_index_equal(eval(repr(index)), index) def test_slice_keep_name(self): idx = RangeIndex(1, 2, name="asdf") assert idx.name == idx[1:].name @pytest.mark.parametrize( "index", [ RangeIndex(start=0, stop=20, step=2, name="foo"), RangeIndex(start=18, stop=-1, step=-2, name="bar"), ], ids=["index_inc", "index_dec"], ) def test_has_duplicates(self, index): assert index.is_unique assert not index.has_duplicates def test_extended_gcd(self, simple_index): index = simple_index result = index._extended_gcd(6, 10) assert result[0] == result[1] * 6 + result[2] * 10 assert 2 == result[0] result = index._extended_gcd(10, 6) assert 2 == result[1] * 10 + result[2] * 6 assert 2 == result[0] def test_min_fitting_element(self): result = RangeIndex(0, 20, 2)._min_fitting_element(1) assert 2 == result result = RangeIndex(1, 6)._min_fitting_element(1) assert 1 == result result = RangeIndex(18, -2, -2)._min_fitting_element(1) assert 2 == result result = RangeIndex(5, 0, -1)._min_fitting_element(1) assert 1 == result big_num = 500000000000000000000000 result = RangeIndex(5, big_num * 2, 1)._min_fitting_element(big_num) assert big_num == result def test_slice_specialised(self, simple_index): index = simple_index index.name = "foo" # scalar indexing res = index[1] expected = 2 assert res == expected res = index[-1] expected = 18 assert res == expected # slicing # slice value completion index_slice = index[:] expected = index tm.assert_index_equal(index_slice, expected) # positive slice values index_slice = index[7:10:2] expected = Index([14, 18], name="foo") tm.assert_index_equal(index_slice, expected, exact="equiv") # negative slice values index_slice = index[-1:-5:-2] expected = Index([18, 14], name="foo") tm.assert_index_equal(index_slice, expected, exact="equiv") # stop overshoot index_slice = index[2:100:4] expected = Index([4, 12], name="foo") tm.assert_index_equal(index_slice, expected, exact="equiv") # reverse index_slice = index[::-1] expected = Index(index.values[::-1], name="foo") tm.assert_index_equal(index_slice, expected, exact="equiv") index_slice = index[-8::-1] expected = Index([4, 2, 0], name="foo") tm.assert_index_equal(index_slice, expected, exact="equiv") index_slice = index[-40::-1] expected = Index(np.array([], dtype=np.int64), name="foo") tm.assert_index_equal(index_slice, expected, exact="equiv") index_slice = index[40::-1] expected = Index(index.values[40::-1], name="foo") tm.assert_index_equal(index_slice, expected, exact="equiv") index_slice = index[10::-1] expected = Index(index.values[::-1], name="foo") tm.assert_index_equal(index_slice, expected, exact="equiv") @pytest.mark.parametrize("step", set(range(-5, 6)) - {0}) def test_len_specialised(self, step): # make sure that our len is the same as np.arange calc start, stop = (0, 5) if step > 0 else (5, 0) arr = np.arange(start, stop, step) index = RangeIndex(start, stop, step) assert len(index) == len(arr) index = RangeIndex(stop, start, step) assert len(index) == 0 @pytest.mark.parametrize( "indices, expected", [ ([RangeIndex(1, 12, 5)], RangeIndex(1, 12, 5)), ([RangeIndex(0, 6, 4)], RangeIndex(0, 6, 4)), ([RangeIndex(1, 3), RangeIndex(3, 7)], RangeIndex(1, 7)), ([RangeIndex(1, 5, 2), RangeIndex(5, 6)], RangeIndex(1, 6, 2)), ([RangeIndex(1, 3, 2), RangeIndex(4, 7, 3)], RangeIndex(1, 7, 3)), ([RangeIndex(-4, 3, 2), RangeIndex(4, 7, 2)], RangeIndex(-4, 7, 2)), ([RangeIndex(-4, -8), RangeIndex(-8, -12)], RangeIndex(0, 0)), ([RangeIndex(-4, -8), RangeIndex(3, -4)], RangeIndex(0, 0)), ([RangeIndex(-4, -8), RangeIndex(3, 5)], RangeIndex(3, 5)), ([RangeIndex(-4, -2), RangeIndex(3, 5)], Index([-4, -3, 3, 4])), ([RangeIndex(-2), RangeIndex(3, 5)], RangeIndex(3, 5)), ([RangeIndex(2), RangeIndex(2)], Index([0, 1, 0, 1])), ([RangeIndex(2), RangeIndex(2, 5), RangeIndex(5, 8, 4)], RangeIndex(0, 6)), ( [RangeIndex(2), RangeIndex(3, 5), RangeIndex(5, 8, 4)], Index([0, 1, 3, 4, 5]), ), ( [RangeIndex(-2, 2), RangeIndex(2, 5), RangeIndex(5, 8, 4)], RangeIndex(-2, 6), ), ([RangeIndex(3), Index([-1, 3, 15])], Index([0, 1, 2, -1, 3, 15])), ([RangeIndex(3), Index([-1, 3.1, 15.0])], Index([0, 1, 2, -1, 3.1, 15.0])), ([RangeIndex(3), Index(["a", None, 14])], Index([0, 1, 2, "a", None, 14])), ([RangeIndex(3, 1), Index(["a", None, 14])], Index(["a", None, 14])), ], ) def test_append(self, indices, expected): # GH16212 result = indices[0].append(indices[1:]) tm.assert_index_equal(result, expected, exact=True) if len(indices) == 2: # Append single item rather than list result2 = indices[0].append(indices[1]) tm.assert_index_equal(result2, expected, exact=True) def test_engineless_lookup(self): # GH 16685 # Standard lookup on RangeIndex should not require the engine to be # created idx = RangeIndex(2, 10, 3) assert idx.get_loc(5) == 1 tm.assert_numpy_array_equal( idx.get_indexer([2, 8]), ensure_platform_int(np.array([0, 2])) ) with pytest.raises(KeyError, match="3"): idx.get_loc(3) assert "_engine" not in idx._cache # Different types of scalars can be excluded immediately, no need to # use the _engine with pytest.raises(KeyError, match="'a'"): idx.get_loc("a") assert "_engine" not in idx._cache def test_format_empty(self): # GH35712 empty_idx = RangeIndex(0) msg = r"RangeIndex\.format is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): assert empty_idx.format() == [] with tm.assert_produces_warning(FutureWarning, match=msg): assert empty_idx.format(name=True) == [""] @pytest.mark.parametrize( "ri", [ RangeIndex(0, -1, -1), RangeIndex(0, 1, 1), RangeIndex(1, 3, 2), RangeIndex(0, -1, -2), RangeIndex(-3, -5, -2), ], ) def test_append_len_one(self, ri): # GH39401 result = ri.append([]) tm.assert_index_equal(result, ri, exact=True) @pytest.mark.parametrize("base", [RangeIndex(0, 2), Index([0, 1])]) def test_isin_range(self, base): # GH#41151 values = RangeIndex(0, 1) result = base.isin(values) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) def test_sort_values_key(self): # GH#43666, GH#52764 sort_order = {8: 2, 6: 0, 4: 8, 2: 10, 0: 12} values = RangeIndex(0, 10, 2) result = values.sort_values(key=lambda x: x.map(sort_order)) expected = Index([6, 8, 4, 2, 0], dtype="int64") tm.assert_index_equal(result, expected, check_exact=True) # check this matches the Series.sort_values behavior ser = values.to_series() result2 = ser.sort_values(key=lambda x: x.map(sort_order)) tm.assert_series_equal(result2, expected.to_series(), check_exact=True) def test_range_index_rsub_by_const(self): # GH#53255 result = 3 - RangeIndex(0, 4, 1) expected = RangeIndex(3, -1, -1) tm.assert_index_equal(result, expected)