from hypothesis import ( assume, example, given, strategies as st, ) import numpy as np import pytest from pandas._libs.byteswap import ( read_double_with_byteswap, read_float_with_byteswap, read_uint16_with_byteswap, read_uint32_with_byteswap, read_uint64_with_byteswap, ) import pandas._testing as tm @given(read_offset=st.integers(0, 11), number=st.integers(min_value=0)) @example(number=2**16, read_offset=0) @example(number=2**32, read_offset=0) @example(number=2**64, read_offset=0) @pytest.mark.parametrize("int_type", [np.uint16, np.uint32, np.uint64]) @pytest.mark.parametrize("should_byteswap", [True, False]) def test_int_byteswap(read_offset, number, int_type, should_byteswap): assume(number < 2 ** (8 * int_type(0).itemsize)) _test(number, int_type, read_offset, should_byteswap) @pytest.mark.filterwarnings("ignore:overflow encountered:RuntimeWarning") @given(read_offset=st.integers(0, 11), number=st.floats()) @pytest.mark.parametrize("float_type", [np.float32, np.float64]) @pytest.mark.parametrize("should_byteswap", [True, False]) def test_float_byteswap(read_offset, number, float_type, should_byteswap): _test(number, float_type, read_offset, should_byteswap) def _test(number, number_type, read_offset, should_byteswap): number = number_type(number) data = np.random.default_rng(2).integers(0, 256, size=20, dtype="uint8") data[read_offset : read_offset + number.itemsize] = number[None].view("uint8") swap_func = { np.float32: read_float_with_byteswap, np.float64: read_double_with_byteswap, np.uint16: read_uint16_with_byteswap, np.uint32: read_uint32_with_byteswap, np.uint64: read_uint64_with_byteswap, }[type(number)] output_number = number_type(swap_func(bytes(data), read_offset, should_byteswap)) if should_byteswap: tm.assert_equal(output_number, number.byteswap()) else: tm.assert_equal(output_number, number)