import gzip import io import os from pathlib import Path import subprocess import sys import tarfile import textwrap import time import zipfile import numpy as np import pytest from pandas.compat import is_platform_windows import pandas as pd import pandas._testing as tm import pandas.io.common as icom @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"]) def test_compression_size(obj, method, compression_only): if compression_only == "tar": compression_only = {"method": "tar", "mode": "w:gz"} with tm.ensure_clean() as path: getattr(obj, method)(path, compression=compression_only) compressed_size = os.path.getsize(path) getattr(obj, method)(path, compression=None) uncompressed_size = os.path.getsize(path) assert uncompressed_size > compressed_size @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_csv", "to_json"]) def test_compression_size_fh(obj, method, compression_only): with tm.ensure_clean() as path: with icom.get_handle( path, "w:gz" if compression_only == "tar" else "w", compression=compression_only, ) as handles: getattr(obj, method)(handles.handle) assert not handles.handle.closed compressed_size = os.path.getsize(path) with tm.ensure_clean() as path: with icom.get_handle(path, "w", compression=None) as handles: getattr(obj, method)(handles.handle) assert not handles.handle.closed uncompressed_size = os.path.getsize(path) assert uncompressed_size > compressed_size @pytest.mark.parametrize( "write_method, write_kwargs, read_method", [ ("to_csv", {"index": False}, pd.read_csv), ("to_json", {}, pd.read_json), ("to_pickle", {}, pd.read_pickle), ], ) def test_dataframe_compression_defaults_to_infer( write_method, write_kwargs, read_method, compression_only, compression_to_extension ): # GH22004 input = pd.DataFrame([[1.0, 0, -4], [3.4, 5, 2]], columns=["X", "Y", "Z"]) extension = compression_to_extension[compression_only] with tm.ensure_clean("compressed" + extension) as path: getattr(input, write_method)(path, **write_kwargs) output = read_method(path, compression=compression_only) tm.assert_frame_equal(output, input) @pytest.mark.parametrize( "write_method,write_kwargs,read_method,read_kwargs", [ ("to_csv", {"index": False, "header": True}, pd.read_csv, {"squeeze": True}), ("to_json", {}, pd.read_json, {"typ": "series"}), ("to_pickle", {}, pd.read_pickle, {}), ], ) def test_series_compression_defaults_to_infer( write_method, write_kwargs, read_method, read_kwargs, compression_only, compression_to_extension, ): # GH22004 input = pd.Series([0, 5, -2, 10], name="X") extension = compression_to_extension[compression_only] with tm.ensure_clean("compressed" + extension) as path: getattr(input, write_method)(path, **write_kwargs) if "squeeze" in read_kwargs: kwargs = read_kwargs.copy() del kwargs["squeeze"] output = read_method(path, compression=compression_only, **kwargs).squeeze( "columns" ) else: output = read_method(path, compression=compression_only, **read_kwargs) tm.assert_series_equal(output, input, check_names=False) def test_compression_warning(compression_only): # Assert that passing a file object to to_csv while explicitly specifying a # compression protocol triggers a RuntimeWarning, as per GH21227. df = pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ) with tm.ensure_clean() as path: with icom.get_handle(path, "w", compression=compression_only) as handles: with tm.assert_produces_warning(RuntimeWarning): df.to_csv(handles.handle, compression=compression_only) def test_compression_binary(compression_only): """ Binary file handles support compression. GH22555 """ df = pd.DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=pd.Index(list("ABCD"), dtype=object), index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), ) # with a file with tm.ensure_clean() as path: with open(path, mode="wb") as file: df.to_csv(file, mode="wb", compression=compression_only) file.seek(0) # file shouldn't be closed tm.assert_frame_equal( df, pd.read_csv(path, index_col=0, compression=compression_only) ) # with BytesIO file = io.BytesIO() df.to_csv(file, mode="wb", compression=compression_only) file.seek(0) # file shouldn't be closed tm.assert_frame_equal( df, pd.read_csv(file, index_col=0, compression=compression_only) ) def test_gzip_reproducibility_file_name(): """ Gzip should create reproducible archives with mtime. Note: Archives created with different filenames will still be different! GH 28103 """ df = pd.DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=pd.Index(list("ABCD"), dtype=object), index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), ) compression_options = {"method": "gzip", "mtime": 1} # test for filename with tm.ensure_clean() as path: path = Path(path) df.to_csv(path, compression=compression_options) time.sleep(0.1) output = path.read_bytes() df.to_csv(path, compression=compression_options) assert output == path.read_bytes() def test_gzip_reproducibility_file_object(): """ Gzip should create reproducible archives with mtime. GH 28103 """ df = pd.DataFrame( 1.1 * np.arange(120).reshape((30, 4)), columns=pd.Index(list("ABCD"), dtype=object), index=pd.Index([f"i-{i}" for i in range(30)], dtype=object), ) compression_options = {"method": "gzip", "mtime": 1} # test for file object buffer = io.BytesIO() df.to_csv(buffer, compression=compression_options, mode="wb") output = buffer.getvalue() time.sleep(0.1) buffer = io.BytesIO() df.to_csv(buffer, compression=compression_options, mode="wb") assert output == buffer.getvalue() @pytest.mark.single_cpu def test_with_missing_lzma(): """Tests if import pandas works when lzma is not present.""" # https://github.com/pandas-dev/pandas/issues/27575 code = textwrap.dedent( """\ import sys sys.modules['lzma'] = None import pandas """ ) subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE) @pytest.mark.single_cpu def test_with_missing_lzma_runtime(): """Tests if RuntimeError is hit when calling lzma without having the module available. """ code = textwrap.dedent( """ import sys import pytest sys.modules['lzma'] = None import pandas as pd df = pd.DataFrame() with pytest.raises(RuntimeError, match='lzma module'): df.to_csv('foo.csv', compression='xz') """ ) subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.PIPE) @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"]) def test_gzip_compression_level(obj, method): # GH33196 with tm.ensure_clean() as path: getattr(obj, method)(path, compression="gzip") compressed_size_default = os.path.getsize(path) getattr(obj, method)(path, compression={"method": "gzip", "compresslevel": 1}) compressed_size_fast = os.path.getsize(path) assert compressed_size_default < compressed_size_fast @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"]) def test_xz_compression_level_read(obj, method): with tm.ensure_clean() as path: getattr(obj, method)(path, compression="xz") compressed_size_default = os.path.getsize(path) getattr(obj, method)(path, compression={"method": "xz", "preset": 1}) compressed_size_fast = os.path.getsize(path) assert compressed_size_default < compressed_size_fast if method == "to_csv": pd.read_csv(path, compression="xz") @pytest.mark.parametrize( "obj", [ pd.DataFrame( 100 * [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], columns=["X", "Y", "Z"], ), pd.Series(100 * [0.123456, 0.234567, 0.567567], name="X"), ], ) @pytest.mark.parametrize("method", ["to_pickle", "to_json", "to_csv"]) def test_bzip_compression_level(obj, method): """GH33196 bzip needs file size > 100k to show a size difference between compression levels, so here we just check if the call works when compression is passed as a dict. """ with tm.ensure_clean() as path: getattr(obj, method)(path, compression={"method": "bz2", "compresslevel": 1}) @pytest.mark.parametrize( "suffix,archive", [ (".zip", zipfile.ZipFile), (".tar", tarfile.TarFile), ], ) def test_empty_archive_zip(suffix, archive): with tm.ensure_clean(filename=suffix) as path: with archive(path, "w"): pass with pytest.raises(ValueError, match="Zero files found"): pd.read_csv(path) def test_ambiguous_archive_zip(): with tm.ensure_clean(filename=".zip") as path: with zipfile.ZipFile(path, "w") as file: file.writestr("a.csv", "foo,bar") file.writestr("b.csv", "foo,bar") with pytest.raises(ValueError, match="Multiple files found in ZIP file"): pd.read_csv(path) def test_ambiguous_archive_tar(tmp_path): csvAPath = tmp_path / "a.csv" with open(csvAPath, "w", encoding="utf-8") as a: a.write("foo,bar\n") csvBPath = tmp_path / "b.csv" with open(csvBPath, "w", encoding="utf-8") as b: b.write("foo,bar\n") tarpath = tmp_path / "archive.tar" with tarfile.TarFile(tarpath, "w") as tar: tar.add(csvAPath, "a.csv") tar.add(csvBPath, "b.csv") with pytest.raises(ValueError, match="Multiple files found in TAR archive"): pd.read_csv(tarpath) def test_tar_gz_to_different_filename(): with tm.ensure_clean(filename=".foo") as file: pd.DataFrame( [["1", "2"]], columns=["foo", "bar"], ).to_csv(file, compression={"method": "tar", "mode": "w:gz"}, index=False) with gzip.open(file) as uncompressed: with tarfile.TarFile(fileobj=uncompressed) as archive: members = archive.getmembers() assert len(members) == 1 content = archive.extractfile(members[0]).read().decode("utf8") if is_platform_windows(): expected = "foo,bar\r\n1,2\r\n" else: expected = "foo,bar\n1,2\n" assert content == expected def test_tar_no_error_on_close(): with io.BytesIO() as buffer: with icom._BytesTarFile(fileobj=buffer, mode="w"): pass