""" Test cases for GroupBy.plot """ import numpy as np import pytest from pandas import ( DataFrame, Index, Series, ) from pandas.tests.plotting.common import ( _check_axes_shape, _check_legend_labels, ) pytest.importorskip("matplotlib") class TestDataFrameGroupByPlots: def test_series_groupby_plotting_nominally_works(self): n = 10 weight = Series(np.random.default_rng(2).normal(166, 20, size=n)) gender = np.random.default_rng(2).choice(["male", "female"], size=n) weight.groupby(gender).plot() def test_series_groupby_plotting_nominally_works_hist(self): n = 10 height = Series(np.random.default_rng(2).normal(60, 10, size=n)) gender = np.random.default_rng(2).choice(["male", "female"], size=n) height.groupby(gender).hist() def test_series_groupby_plotting_nominally_works_alpha(self): n = 10 height = Series(np.random.default_rng(2).normal(60, 10, size=n)) gender = np.random.default_rng(2).choice(["male", "female"], size=n) # Regression test for GH8733 height.groupby(gender).plot(alpha=0.5) def test_plotting_with_float_index_works(self): # GH 7025 df = DataFrame( { "def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.default_rng(2).standard_normal(9), }, index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], ) df.groupby("def")["val"].plot() def test_plotting_with_float_index_works_apply(self): # GH 7025 df = DataFrame( { "def": [1, 1, 1, 2, 2, 2, 3, 3, 3], "val": np.random.default_rng(2).standard_normal(9), }, index=[1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0], ) df.groupby("def")["val"].apply(lambda x: x.plot()) def test_hist_single_row(self): # GH10214 bins = np.arange(80, 100 + 2, 1) df = DataFrame({"Name": ["AAA", "BBB"], "ByCol": [1, 2], "Mark": [85, 89]}) df["Mark"].hist(by=df["ByCol"], bins=bins) def test_hist_single_row_single_bycol(self): # GH10214 bins = np.arange(80, 100 + 2, 1) df = DataFrame({"Name": ["AAA"], "ByCol": [1], "Mark": [85]}) df["Mark"].hist(by=df["ByCol"], bins=bins) def test_plot_submethod_works(self): df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) df.groupby("z").plot.scatter("x", "y") def test_plot_submethod_works_line(self): df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) df.groupby("z")["x"].plot.line() def test_plot_kwargs(self): df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) res = df.groupby("z").plot(kind="scatter", x="x", y="y") # check that a scatter plot is effectively plotted: the axes should # contain a PathCollection from the scatter plot (GH11805) assert len(res["a"].collections) == 1 def test_plot_kwargs_scatter(self): df = DataFrame({"x": [1, 2, 3, 4, 5], "y": [1, 2, 3, 2, 1], "z": list("ababa")}) res = df.groupby("z").plot.scatter(x="x", y="y") assert len(res["a"].collections) == 1 @pytest.mark.parametrize("column, expected_axes_num", [(None, 2), ("b", 1)]) def test_groupby_hist_frame_with_legend(self, column, expected_axes_num): # GH 6279 - DataFrameGroupBy histogram can have a legend expected_layout = (1, expected_axes_num) expected_labels = column or [["a"], ["b"]] index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame( np.random.default_rng(2).standard_normal((30, 2)), index=index, columns=["a", "b"], ) g = df.groupby("c") for axes in g.hist(legend=True, column=column): _check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout) for ax, expected_label in zip(axes[0], expected_labels): _check_legend_labels(ax, expected_label) @pytest.mark.parametrize("column", [None, "b"]) def test_groupby_hist_frame_with_legend_raises(self, column): # GH 6279 - DataFrameGroupBy histogram with legend and label raises index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame( np.random.default_rng(2).standard_normal((30, 2)), index=index, columns=["a", "b"], ) g = df.groupby("c") with pytest.raises(ValueError, match="Cannot use both legend and label"): g.hist(legend=True, column=column, label="d") def test_groupby_hist_series_with_legend(self): # GH 6279 - SeriesGroupBy histogram can have a legend index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame( np.random.default_rng(2).standard_normal((30, 2)), index=index, columns=["a", "b"], ) g = df.groupby("c") for ax in g["a"].hist(legend=True): _check_axes_shape(ax, axes_num=1, layout=(1, 1)) _check_legend_labels(ax, ["1", "2"]) def test_groupby_hist_series_with_legend_raises(self): # GH 6279 - SeriesGroupBy histogram with legend and label raises index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame( np.random.default_rng(2).standard_normal((30, 2)), index=index, columns=["a", "b"], ) g = df.groupby("c") with pytest.raises(ValueError, match="Cannot use both legend and label"): g.hist(legend=True, label="d")