from datetime import datetime import numpy as np import pytest from pandas.core.dtypes.common import is_extension_array_dtype import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, NaT, PeriodIndex, Series, TimedeltaIndex, ) import pandas._testing as tm from pandas.core.groupby.groupby import DataError from pandas.core.groupby.grouper import Grouper from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import period_range from pandas.core.indexes.timedeltas import timedelta_range from pandas.core.resample import _asfreq_compat # a fixture value can be overridden by the test parameter value. Note that the # value of the fixture can be overridden this way even if the test doesn't use # it directly (doesn't mention it in the function prototype). # see https://docs.pytest.org/en/latest/fixture.html#override-a-fixture-with-direct-test-parametrization # noqa: E501 # in this module we override the fixture values defined in conftest.py # tuples of '_index_factory,_series_name,_index_start,_index_end' DATE_RANGE = (date_range, "dti", datetime(2005, 1, 1), datetime(2005, 1, 10)) PERIOD_RANGE = (period_range, "pi", datetime(2005, 1, 1), datetime(2005, 1, 10)) TIMEDELTA_RANGE = (timedelta_range, "tdi", "1 day", "10 day") all_ts = pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, PERIOD_RANGE, TIMEDELTA_RANGE], ) @pytest.fixture def create_index(_index_factory): def _create_index(*args, **kwargs): """return the _index_factory created using the args, kwargs""" return _index_factory(*args, **kwargs) return _create_index @pytest.mark.parametrize("freq", ["2D", "1h"]) @pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE] ) def test_asfreq(series_and_frame, freq, create_index): obj = series_and_frame result = obj.resample(freq).asfreq() new_index = create_index(obj.index[0], obj.index[-1], freq=freq) expected = obj.reindex(new_index) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize( "_index_factory,_series_name,_index_start,_index_end", [DATE_RANGE, TIMEDELTA_RANGE] ) def test_asfreq_fill_value(series, create_index): # test for fill value during resampling, issue 3715 ser = series result = ser.resample("1h").asfreq() new_index = create_index(ser.index[0], ser.index[-1], freq="1h") expected = ser.reindex(new_index) tm.assert_series_equal(result, expected) # Explicit cast to float to avoid implicit cast when setting None frame = ser.astype("float").to_frame("value") frame.iloc[1] = None result = frame.resample("1h").asfreq(fill_value=4.0) new_index = create_index(frame.index[0], frame.index[-1], freq="1h") expected = frame.reindex(new_index, fill_value=4.0) tm.assert_frame_equal(result, expected) @all_ts def test_resample_interpolate(frame): # GH#12925 df = frame warn = None if isinstance(df.index, PeriodIndex): warn = FutureWarning msg = "Resampling with a PeriodIndex is deprecated" with tm.assert_produces_warning(warn, match=msg): result = df.resample("1min").asfreq().interpolate() expected = df.resample("1min").interpolate() tm.assert_frame_equal(result, expected) def test_raises_on_non_datetimelike_index(): # this is a non datetimelike index xp = DataFrame() msg = ( "Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, " "but got an instance of 'RangeIndex'" ) with pytest.raises(TypeError, match=msg): xp.resample("YE") @all_ts @pytest.mark.parametrize("freq", ["ME", "D", "h"]) def test_resample_empty_series(freq, empty_series_dti, resample_method): # GH12771 & GH12868 ser = empty_series_dti if freq == "ME" and isinstance(ser.index, TimedeltaIndex): msg = ( "Resampling on a TimedeltaIndex requires fixed-duration `freq`, " "e.g. '24h' or '3D', not " ) with pytest.raises(ValueError, match=msg): ser.resample(freq) return elif freq == "ME" and isinstance(ser.index, PeriodIndex): # index is PeriodIndex, so convert to corresponding Period freq freq = "M" warn = None if isinstance(ser.index, PeriodIndex): warn = FutureWarning msg = "Resampling with a PeriodIndex is deprecated" with tm.assert_produces_warning(warn, match=msg): rs = ser.resample(freq) result = getattr(rs, resample_method)() if resample_method == "ohlc": expected = DataFrame( [], index=ser.index[:0].copy(), columns=["open", "high", "low", "close"] ) expected.index = _asfreq_compat(ser.index, freq) tm.assert_frame_equal(result, expected, check_dtype=False) else: expected = ser.copy() expected.index = _asfreq_compat(ser.index, freq) tm.assert_series_equal(result, expected, check_dtype=False) tm.assert_index_equal(result.index, expected.index) assert result.index.freq == expected.index.freq @all_ts @pytest.mark.parametrize( "freq", [ pytest.param("ME", marks=pytest.mark.xfail(reason="Don't know why this fails")), "D", "h", ], ) def test_resample_nat_index_series(freq, series, resample_method): # GH39227 ser = series.copy() ser.index = PeriodIndex([NaT] * len(ser), freq=freq) msg = "Resampling with a PeriodIndex is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): rs = ser.resample(freq) result = getattr(rs, resample_method)() if resample_method == "ohlc": expected = DataFrame( [], index=ser.index[:0].copy(), columns=["open", "high", "low", "close"] ) tm.assert_frame_equal(result, expected, check_dtype=False) else: expected = ser[:0].copy() tm.assert_series_equal(result, expected, check_dtype=False) tm.assert_index_equal(result.index, expected.index) assert result.index.freq == expected.index.freq @all_ts @pytest.mark.parametrize("freq", ["ME", "D", "h"]) @pytest.mark.parametrize("resample_method", ["count", "size"]) def test_resample_count_empty_series(freq, empty_series_dti, resample_method): # GH28427 ser = empty_series_dti if freq == "ME" and isinstance(ser.index, TimedeltaIndex): msg = ( "Resampling on a TimedeltaIndex requires fixed-duration `freq`, " "e.g. '24h' or '3D', not " ) with pytest.raises(ValueError, match=msg): ser.resample(freq) return elif freq == "ME" and isinstance(ser.index, PeriodIndex): # index is PeriodIndex, so convert to corresponding Period freq freq = "M" warn = None if isinstance(ser.index, PeriodIndex): warn = FutureWarning msg = "Resampling with a PeriodIndex is deprecated" with tm.assert_produces_warning(warn, match=msg): rs = ser.resample(freq) result = getattr(rs, resample_method)() index = _asfreq_compat(ser.index, freq) expected = Series([], dtype="int64", index=index, name=ser.name) tm.assert_series_equal(result, expected) @all_ts @pytest.mark.parametrize("freq", ["ME", "D", "h"]) def test_resample_empty_dataframe(empty_frame_dti, freq, resample_method): # GH13212 df = empty_frame_dti # count retains dimensions too if freq == "ME" and isinstance(df.index, TimedeltaIndex): msg = ( "Resampling on a TimedeltaIndex requires fixed-duration `freq`, " "e.g. '24h' or '3D', not " ) with pytest.raises(ValueError, match=msg): df.resample(freq, group_keys=False) return elif freq == "ME" and isinstance(df.index, PeriodIndex): # index is PeriodIndex, so convert to corresponding Period freq freq = "M" warn = None if isinstance(df.index, PeriodIndex): warn = FutureWarning msg = "Resampling with a PeriodIndex is deprecated" with tm.assert_produces_warning(warn, match=msg): rs = df.resample(freq, group_keys=False) result = getattr(rs, resample_method)() if resample_method == "ohlc": # TODO: no tests with len(df.columns) > 0 mi = MultiIndex.from_product([df.columns, ["open", "high", "low", "close"]]) expected = DataFrame( [], index=df.index[:0].copy(), columns=mi, dtype=np.float64 ) expected.index = _asfreq_compat(df.index, freq) elif resample_method != "size": expected = df.copy() else: # GH14962 expected = Series([], dtype=np.int64) expected.index = _asfreq_compat(df.index, freq) tm.assert_index_equal(result.index, expected.index) assert result.index.freq == expected.index.freq tm.assert_almost_equal(result, expected) # test size for GH13212 (currently stays as df) @all_ts @pytest.mark.parametrize("freq", ["ME", "D", "h"]) def test_resample_count_empty_dataframe(freq, empty_frame_dti): # GH28427 empty_frame_dti["a"] = [] if freq == "ME" and isinstance(empty_frame_dti.index, TimedeltaIndex): msg = ( "Resampling on a TimedeltaIndex requires fixed-duration `freq`, " "e.g. '24h' or '3D', not " ) with pytest.raises(ValueError, match=msg): empty_frame_dti.resample(freq) return elif freq == "ME" and isinstance(empty_frame_dti.index, PeriodIndex): # index is PeriodIndex, so convert to corresponding Period freq freq = "M" warn = None if isinstance(empty_frame_dti.index, PeriodIndex): warn = FutureWarning msg = "Resampling with a PeriodIndex is deprecated" with tm.assert_produces_warning(warn, match=msg): rs = empty_frame_dti.resample(freq) result = rs.count() index = _asfreq_compat(empty_frame_dti.index, freq) expected = DataFrame(dtype="int64", index=index, columns=Index(["a"], dtype=object)) tm.assert_frame_equal(result, expected) @all_ts @pytest.mark.parametrize("freq", ["ME", "D", "h"]) def test_resample_size_empty_dataframe(freq, empty_frame_dti): # GH28427 empty_frame_dti["a"] = [] if freq == "ME" and isinstance(empty_frame_dti.index, TimedeltaIndex): msg = ( "Resampling on a TimedeltaIndex requires fixed-duration `freq`, " "e.g. '24h' or '3D', not " ) with pytest.raises(ValueError, match=msg): empty_frame_dti.resample(freq) return elif freq == "ME" and isinstance(empty_frame_dti.index, PeriodIndex): # index is PeriodIndex, so convert to corresponding Period freq freq = "M" msg = "Resampling with a PeriodIndex" warn = None if isinstance(empty_frame_dti.index, PeriodIndex): warn = FutureWarning with tm.assert_produces_warning(warn, match=msg): rs = empty_frame_dti.resample(freq) result = rs.size() index = _asfreq_compat(empty_frame_dti.index, freq) expected = Series([], dtype="int64", index=index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "index", [ PeriodIndex([], freq="M", name="a"), DatetimeIndex([], name="a"), TimedeltaIndex([], name="a"), ], ) @pytest.mark.parametrize("dtype", [float, int, object, "datetime64[ns]"]) @pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning") def test_resample_empty_dtypes(index, dtype, resample_method): # Empty series were sometimes causing a segfault (for the functions # with Cython bounds-checking disabled) or an IndexError. We just run # them to ensure they no longer do. (GH #10228) warn = None if isinstance(index, PeriodIndex): # GH#53511 index = PeriodIndex([], freq="B", name=index.name) warn = FutureWarning msg = "Resampling with a PeriodIndex is deprecated" empty_series_dti = Series([], index, dtype) with tm.assert_produces_warning(warn, match=msg): rs = empty_series_dti.resample("d", group_keys=False) try: getattr(rs, resample_method)() except DataError: # Ignore these since some combinations are invalid # (ex: doing mean with dtype of np.object_) pass @all_ts @pytest.mark.parametrize("freq", ["ME", "D", "h"]) def test_apply_to_empty_series(empty_series_dti, freq): # GH 14313 ser = empty_series_dti if freq == "ME" and isinstance(empty_series_dti.index, TimedeltaIndex): msg = ( "Resampling on a TimedeltaIndex requires fixed-duration `freq`, " "e.g. '24h' or '3D', not " ) with pytest.raises(ValueError, match=msg): empty_series_dti.resample(freq) return elif freq == "ME" and isinstance(empty_series_dti.index, PeriodIndex): # index is PeriodIndex, so convert to corresponding Period freq freq = "M" msg = "Resampling with a PeriodIndex" warn = None if isinstance(empty_series_dti.index, PeriodIndex): warn = FutureWarning with tm.assert_produces_warning(warn, match=msg): rs = ser.resample(freq, group_keys=False) result = rs.apply(lambda x: 1) with tm.assert_produces_warning(warn, match=msg): expected = ser.resample(freq).apply("sum") tm.assert_series_equal(result, expected, check_dtype=False) @all_ts def test_resampler_is_iterable(series): # GH 15314 freq = "h" tg = Grouper(freq=freq, convention="start") msg = "Resampling with a PeriodIndex" warn = None if isinstance(series.index, PeriodIndex): warn = FutureWarning with tm.assert_produces_warning(warn, match=msg): grouped = series.groupby(tg) with tm.assert_produces_warning(warn, match=msg): resampled = series.resample(freq) for (rk, rv), (gk, gv) in zip(resampled, grouped): assert rk == gk tm.assert_series_equal(rv, gv) @all_ts def test_resample_quantile(series): # GH 15023 ser = series q = 0.75 freq = "h" msg = "Resampling with a PeriodIndex" warn = None if isinstance(series.index, PeriodIndex): warn = FutureWarning with tm.assert_produces_warning(warn, match=msg): result = ser.resample(freq).quantile(q) expected = ser.resample(freq).agg(lambda x: x.quantile(q)).rename(ser.name) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("how", ["first", "last"]) def test_first_last_skipna(any_real_nullable_dtype, skipna, how): # GH#57019 if is_extension_array_dtype(any_real_nullable_dtype): na_value = Series(dtype=any_real_nullable_dtype).dtype.na_value else: na_value = np.nan df = DataFrame( { "a": [2, 1, 1, 2], "b": [na_value, 3.0, na_value, 4.0], "c": [na_value, 3.0, na_value, 4.0], }, index=date_range("2020-01-01", periods=4, freq="D"), dtype=any_real_nullable_dtype, ) rs = df.resample("ME") method = getattr(rs, how) result = method(skipna=skipna) gb = df.groupby(df.shape[0] * [pd.to_datetime("2020-01-31")]) expected = getattr(gb, how)(skipna=skipna) expected.index.freq = "ME" tm.assert_frame_equal(result, expected)