import numpy as np import pytest from pandas import Series import pandas._testing as tm def no_nans(x): return x.notna().all().all() def all_na(x): return x.isnull().all().all() @pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum]) def test_expanding_apply_consistency_sum_nans(request, all_data, min_periods, f): if f is np.sum: if not no_nans(all_data) and not ( all_na(all_data) and not all_data.empty and min_periods > 0 ): request.applymarker( pytest.mark.xfail(reason="np.sum has different behavior with NaNs") ) expanding_f_result = all_data.expanding(min_periods=min_periods).sum() expanding_apply_f_result = all_data.expanding(min_periods=min_periods).apply( func=f, raw=True ) tm.assert_equal(expanding_f_result, expanding_apply_f_result) @pytest.mark.parametrize("ddof", [0, 1]) def test_moments_consistency_var(all_data, min_periods, ddof): var_x = all_data.expanding(min_periods=min_periods).var(ddof=ddof) assert not (var_x < 0).any().any() if ddof == 0: # check that biased var(x) == mean(x^2) - mean(x)^2 mean_x2 = (all_data * all_data).expanding(min_periods=min_periods).mean() mean_x = all_data.expanding(min_periods=min_periods).mean() tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x)) @pytest.mark.parametrize("ddof", [0, 1]) def test_moments_consistency_var_constant(consistent_data, min_periods, ddof): count_x = consistent_data.expanding(min_periods=min_periods).count() var_x = consistent_data.expanding(min_periods=min_periods).var(ddof=ddof) # check that variance of constant series is identically 0 assert not (var_x > 0).any().any() expected = consistent_data * np.nan expected[count_x >= max(min_periods, 1)] = 0.0 if ddof == 1: expected[count_x < 2] = np.nan tm.assert_equal(var_x, expected) @pytest.mark.parametrize("ddof", [0, 1]) def test_expanding_consistency_var_std_cov(all_data, min_periods, ddof): var_x = all_data.expanding(min_periods=min_periods).var(ddof=ddof) assert not (var_x < 0).any().any() std_x = all_data.expanding(min_periods=min_periods).std(ddof=ddof) assert not (std_x < 0).any().any() # check that var(x) == std(x)^2 tm.assert_equal(var_x, std_x * std_x) cov_x_x = all_data.expanding(min_periods=min_periods).cov(all_data, ddof=ddof) assert not (cov_x_x < 0).any().any() # check that var(x) == cov(x, x) tm.assert_equal(var_x, cov_x_x) @pytest.mark.parametrize("ddof", [0, 1]) def test_expanding_consistency_series_cov_corr(series_data, min_periods, ddof): var_x_plus_y = ( (series_data + series_data).expanding(min_periods=min_periods).var(ddof=ddof) ) var_x = series_data.expanding(min_periods=min_periods).var(ddof=ddof) var_y = series_data.expanding(min_periods=min_periods).var(ddof=ddof) cov_x_y = series_data.expanding(min_periods=min_periods).cov(series_data, ddof=ddof) # check that cov(x, y) == (var(x+y) - var(x) - # var(y)) / 2 tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y)) # check that corr(x, y) == cov(x, y) / (std(x) * # std(y)) corr_x_y = series_data.expanding(min_periods=min_periods).corr(series_data) std_x = series_data.expanding(min_periods=min_periods).std(ddof=ddof) std_y = series_data.expanding(min_periods=min_periods).std(ddof=ddof) tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y)) if ddof == 0: # check that biased cov(x, y) == mean(x*y) - # mean(x)*mean(y) mean_x = series_data.expanding(min_periods=min_periods).mean() mean_y = series_data.expanding(min_periods=min_periods).mean() mean_x_times_y = ( (series_data * series_data).expanding(min_periods=min_periods).mean() ) tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y)) def test_expanding_consistency_mean(all_data, min_periods): result = all_data.expanding(min_periods=min_periods).mean() expected = ( all_data.expanding(min_periods=min_periods).sum() / all_data.expanding(min_periods=min_periods).count() ) tm.assert_equal(result, expected.astype("float64")) def test_expanding_consistency_constant(consistent_data, min_periods): count_x = consistent_data.expanding().count() mean_x = consistent_data.expanding(min_periods=min_periods).mean() # check that correlation of a series with itself is either 1 or NaN corr_x_x = consistent_data.expanding(min_periods=min_periods).corr(consistent_data) exp = ( consistent_data.max() if isinstance(consistent_data, Series) else consistent_data.max().max() ) # check mean of constant series expected = consistent_data * np.nan expected[count_x >= max(min_periods, 1)] = exp tm.assert_equal(mean_x, expected) # check correlation of constant series with itself is NaN expected[:] = np.nan tm.assert_equal(corr_x_x, expected) def test_expanding_consistency_var_debiasing_factors(all_data, min_periods): # check variance debiasing factors var_unbiased_x = all_data.expanding(min_periods=min_periods).var() var_biased_x = all_data.expanding(min_periods=min_periods).var(ddof=0) var_debiasing_factors_x = all_data.expanding().count() / ( all_data.expanding().count() - 1.0 ).replace(0.0, np.nan) tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x)