import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, NaT, Series, Timestamp, date_range, ) import pandas._testing as tm from pandas.tseries import offsets @pytest.fixture def regular(): return DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ).set_index("A") @pytest.fixture def ragged(): df = DataFrame({"B": range(5)}) df.index = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] return df class TestRollingTS: # rolling time-series friendly # xref GH13327 def test_doc_string(self): df = DataFrame( {"B": [0, 1, 2, np.nan, 4]}, index=[ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ], ) df df.rolling("2s").sum() def test_invalid_window_non_int(self, regular): # not a valid freq msg = "passed window foobar is not compatible with a datetimelike index" with pytest.raises(ValueError, match=msg): regular.rolling(window="foobar") # not a datetimelike index msg = "window must be an integer" with pytest.raises(ValueError, match=msg): regular.reset_index().rolling(window="foobar") @pytest.mark.parametrize("freq", ["2MS", offsets.MonthBegin(2)]) def test_invalid_window_nonfixed(self, freq, regular): # non-fixed freqs msg = "\\<2 \\* MonthBegins\\> is a non-fixed frequency" with pytest.raises(ValueError, match=msg): regular.rolling(window=freq) @pytest.mark.parametrize("freq", ["1D", offsets.Day(2), "2ms"]) def test_valid_window(self, freq, regular): regular.rolling(window=freq) @pytest.mark.parametrize("minp", [1.0, "foo", np.array([1, 2, 3])]) def test_invalid_minp(self, minp, regular): # non-integer min_periods msg = ( r"local variable 'minp' referenced before assignment|" "min_periods must be an integer" ) with pytest.raises(ValueError, match=msg): regular.rolling(window="1D", min_periods=minp) def test_on(self, regular): df = regular # not a valid column msg = ( r"invalid on specified as foobar, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling(window="2s", on="foobar") # column is valid df = df.copy() df["C"] = date_range("20130101", periods=len(df)) df.rolling(window="2d", on="C").sum() # invalid columns msg = "window must be an integer" with pytest.raises(ValueError, match=msg): df.rolling(window="2d", on="B") # ok even though on non-selected df.rolling(window="2d", on="C").B.sum() def test_monotonic_on(self): # on/index must be monotonic df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) assert df.A.is_monotonic_increasing df.rolling("2s", on="A").sum() df = df.set_index("A") assert df.index.is_monotonic_increasing df.rolling("2s").sum() def test_non_monotonic_on(self): # GH 19248 df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": range(5)} ) df = df.set_index("A") non_monotonic_index = df.index.to_list() non_monotonic_index[0] = non_monotonic_index[3] df.index = non_monotonic_index assert not df.index.is_monotonic_increasing msg = "index values must be monotonic" with pytest.raises(ValueError, match=msg): df.rolling("2s").sum() df = df.reset_index() msg = ( r"invalid on specified as A, must be a column " "\\(of DataFrame\\), an Index or None" ) with pytest.raises(ValueError, match=msg): df.rolling("2s", on="A").sum() def test_frame_on(self): df = DataFrame( {"B": range(5), "C": date_range("20130101 09:00:00", periods=5, freq="3s")} ) df["A"] = [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] # we are doing simulating using 'on' expected = df.set_index("A").rolling("2s").B.sum().reset_index(drop=True) result = df.rolling("2s", on="A").B.sum() tm.assert_series_equal(result, expected) # test as a frame # we should be ignoring the 'on' as an aggregation column # note that the expected is setting, computing, and resetting # so the columns need to be switched compared # to the actual result where they are ordered as in the # original expected = ( df.set_index("A").rolling("2s")[["B"]].sum().reset_index()[["B", "A"]] ) result = df.rolling("2s", on="A")[["B"]].sum() tm.assert_frame_equal(result, expected) def test_frame_on2(self, unit): # using multiple aggregation columns dti = DatetimeIndex( [ Timestamp("20130101 09:00:00"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:05"), Timestamp("20130101 09:00:06"), ] ).as_unit(unit) df = DataFrame( { "A": [0, 1, 2, 3, 4], "B": [0, 1, 2, np.nan, 4], "C": dti, }, columns=["A", "C", "B"], ) expected1 = DataFrame( {"A": [0.0, 1, 3, 3, 7], "B": [0, 1, 3, np.nan, 4], "C": df["C"]}, columns=["A", "C", "B"], ) result = df.rolling("2s", on="C").sum() expected = expected1 tm.assert_frame_equal(result, expected) expected = Series([0, 1, 3, np.nan, 4], name="B") result = df.rolling("2s", on="C").B.sum() tm.assert_series_equal(result, expected) expected = expected1[["A", "B", "C"]] result = df.rolling("2s", on="C")[["A", "B", "C"]].sum() tm.assert_frame_equal(result, expected) def test_basic_regular(self, regular): df = regular.copy() df.index = date_range("20130101", periods=5, freq="D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="1D").sum() tm.assert_frame_equal(result, expected) df.index = date_range("20130101", periods=5, freq="2D") expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1, min_periods=1).sum() result = df.rolling(window="2D", min_periods=1).sum() tm.assert_frame_equal(result, expected) expected = df.rolling(window=1).sum() result = df.rolling(window="2D").sum() tm.assert_frame_equal(result, expected) def test_min_periods(self, regular): # compare for min_periods df = regular # these slightly different expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.rolling(2, min_periods=1).sum() result = df.rolling("2s", min_periods=1).sum() tm.assert_frame_equal(result, expected) def test_closed(self, regular, unit): # xref GH13965 dti = DatetimeIndex( [ Timestamp("20130101 09:00:01"), Timestamp("20130101 09:00:02"), Timestamp("20130101 09:00:03"), Timestamp("20130101 09:00:04"), Timestamp("20130101 09:00:06"), ] ).as_unit(unit) df = DataFrame( {"A": [1] * 5}, index=dti, ) # closed must be 'right', 'left', 'both', 'neither' msg = "closed must be 'right', 'left', 'both' or 'neither'" with pytest.raises(ValueError, match=msg): regular.rolling(window="2s", closed="blabla") expected = df.copy() expected["A"] = [1.0, 2, 2, 2, 1] result = df.rolling("2s", closed="right").sum() tm.assert_frame_equal(result, expected) # default should be 'right' result = df.rolling("2s").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [1.0, 2, 3, 3, 2] result = df.rolling("2s", closed="both").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 2, 2, 1] result = df.rolling("2s", closed="left").sum() tm.assert_frame_equal(result, expected) expected = df.copy() expected["A"] = [np.nan, 1.0, 1, 1, np.nan] result = df.rolling("2s", closed="neither").sum() tm.assert_frame_equal(result, expected) def test_ragged_sum(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 3, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, np.nan, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="3s").sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 5, 7] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="4s", min_periods=3).sum() expected = df.copy() expected["B"] = [np.nan, np.nan, 3, 6, 9] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).sum() expected = df.copy() expected["B"] = [0.0, 1, 3, 6, 10] tm.assert_frame_equal(result, expected) def test_ragged_mean(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).mean() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_median(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).median() expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_quantile(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).quantile(0.5) expected = df.copy() expected["B"] = [0.0, 1, 1.5, 3.0, 3.5] tm.assert_frame_equal(result, expected) def test_ragged_std(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).std(ddof=0) expected = df.copy() expected["B"] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="1s", min_periods=1).std(ddof=1) expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).std(ddof=0) expected = df.copy() expected["B"] = [0.0] + [0.5] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).std(ddof=1) expected = df.copy() expected["B"] = [np.nan, 0.707107, 1.0, 1.0, 1.290994] tm.assert_frame_equal(result, expected) def test_ragged_var(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).var(ddof=0) expected = df.copy() expected["B"] = [0.0] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="1s", min_periods=1).var(ddof=1) expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="3s", min_periods=1).var(ddof=0) expected = df.copy() expected["B"] = [0.0] + [0.25] * 4 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).var(ddof=1) expected = df.copy() expected["B"] = [np.nan, 0.5, 1.0, 1.0, 1 + 2 / 3.0] tm.assert_frame_equal(result, expected) def test_ragged_skew(self, ragged): df = ragged result = df.rolling(window="3s", min_periods=1).skew() expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).skew() expected = df.copy() expected["B"] = [np.nan] * 2 + [0.0, 0.0, 0.0] tm.assert_frame_equal(result, expected) def test_ragged_kurt(self, ragged): df = ragged result = df.rolling(window="3s", min_periods=1).kurt() expected = df.copy() expected["B"] = [np.nan] * 5 tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).kurt() expected = df.copy() expected["B"] = [np.nan] * 4 + [-1.2] tm.assert_frame_equal(result, expected) def test_ragged_count(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).count() expected = df.copy() expected["B"] = [1.0, 1, 1, 1, 1] tm.assert_frame_equal(result, expected) df = ragged result = df.rolling(window="1s").count() tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).count() expected = df.copy() expected["B"] = [1.0, 1, 2, 1, 2] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=2).count() expected = df.copy() expected["B"] = [np.nan, np.nan, 2, np.nan, 2] tm.assert_frame_equal(result, expected) def test_regular_min(self): df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": [0.0, 1, 2, 3, 4]} ).set_index("A") result = df.rolling("1s").min() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) df = DataFrame( {"A": date_range("20130101", periods=5, freq="s"), "B": [5, 4, 3, 4, 5]} ).set_index("A") tm.assert_frame_equal(result, expected) result = df.rolling("2s").min() expected = df.copy() expected["B"] = [5.0, 4, 3, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling("5s").min() expected = df.copy() expected["B"] = [5.0, 4, 3, 3, 3] tm.assert_frame_equal(result, expected) def test_ragged_min(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 1, 1, 3, 3] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).min() expected = df.copy() expected["B"] = [0.0, 0, 0, 1, 1] tm.assert_frame_equal(result, expected) def test_perf_min(self): N = 10000 dfp = DataFrame( {"B": np.random.default_rng(2).standard_normal(N)}, index=date_range("20130101", periods=N, freq="s"), ) expected = dfp.rolling(2, min_periods=1).min() result = dfp.rolling("2s").min() assert ((result - expected) < 0.01).all().all() expected = dfp.rolling(200, min_periods=1).min() result = dfp.rolling("200s").min() assert ((result - expected) < 0.01).all().all() def test_ragged_max(self, ragged): df = ragged result = df.rolling(window="1s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="2s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) result = df.rolling(window="5s", min_periods=1).max() expected = df.copy() expected["B"] = [0.0, 1, 2, 3, 4] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "freq, op, result_data", [ ("ms", "min", [0.0] * 10), ("ms", "mean", [0.0] * 9 + [2.0 / 9]), ("ms", "max", [0.0] * 9 + [2.0]), ("s", "min", [0.0] * 10), ("s", "mean", [0.0] * 9 + [2.0 / 9]), ("s", "max", [0.0] * 9 + [2.0]), ("min", "min", [0.0] * 10), ("min", "mean", [0.0] * 9 + [2.0 / 9]), ("min", "max", [0.0] * 9 + [2.0]), ("h", "min", [0.0] * 10), ("h", "mean", [0.0] * 9 + [2.0 / 9]), ("h", "max", [0.0] * 9 + [2.0]), ("D", "min", [0.0] * 10), ("D", "mean", [0.0] * 9 + [2.0 / 9]), ("D", "max", [0.0] * 9 + [2.0]), ], ) def test_freqs_ops(self, freq, op, result_data): # GH 21096 index = date_range(start="2018-1-1 01:00:00", freq=f"1{freq}", periods=10) # Explicit cast to float to avoid implicit cast when setting nan s = Series(data=0, index=index, dtype="float") s.iloc[1] = np.nan s.iloc[-1] = 2 result = getattr(s.rolling(window=f"10{freq}"), op)() expected = Series(data=result_data, index=index) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "f", [ "sum", "mean", "count", "median", "std", "var", "kurt", "skew", "min", "max", ], ) def test_all(self, f, regular): # simple comparison of integer vs time-based windowing df = regular * 2 er = df.rolling(window=1) r = df.rolling(window="1s") result = getattr(r, f)() expected = getattr(er, f)() tm.assert_frame_equal(result, expected) result = r.quantile(0.5) expected = er.quantile(0.5) tm.assert_frame_equal(result, expected) def test_all2(self, arithmetic_win_operators): f = arithmetic_win_operators # more sophisticated comparison of integer vs. # time-based windowing df = DataFrame( {"B": np.arange(50)}, index=date_range("20130101", periods=50, freq="h") ) # in-range data dft = df.between_time("09:00", "16:00") r = dft.rolling(window="5h") result = getattr(r, f)() # we need to roll the days separately # to compare with a time-based roll # finally groupby-apply will return a multi-index # so we need to drop the day def agg_by_day(x): x = x.between_time("09:00", "16:00") return getattr(x.rolling(5, min_periods=1), f)() expected = ( df.groupby(df.index.day).apply(agg_by_day).reset_index(level=0, drop=True) ) tm.assert_frame_equal(result, expected) def test_rolling_cov_offset(self): # GH16058 idx = date_range("2017-01-01", periods=24, freq="1h") ss = Series(np.arange(len(idx)), index=idx) result = ss.rolling("2h").cov() expected = Series([np.nan] + [0.5] * (len(idx) - 1), index=idx) tm.assert_series_equal(result, expected) expected2 = ss.rolling(2, min_periods=1).cov() tm.assert_series_equal(result, expected2) result = ss.rolling("3h").cov() expected = Series([np.nan, 0.5] + [1.0] * (len(idx) - 2), index=idx) tm.assert_series_equal(result, expected) expected2 = ss.rolling(3, min_periods=1).cov() tm.assert_series_equal(result, expected2) def test_rolling_on_decreasing_index(self, unit): # GH-19248, GH-32385 index = DatetimeIndex( [ Timestamp("20190101 09:00:30"), Timestamp("20190101 09:00:27"), Timestamp("20190101 09:00:20"), Timestamp("20190101 09:00:18"), Timestamp("20190101 09:00:10"), ] ).as_unit(unit) df = DataFrame({"column": [3, 4, 4, 5, 6]}, index=index) result = df.rolling("5s").min() expected = DataFrame({"column": [3.0, 3.0, 4.0, 4.0, 6.0]}, index=index) tm.assert_frame_equal(result, expected) def test_rolling_on_empty(self): # GH-32385 df = DataFrame({"column": []}, index=[]) result = df.rolling("5s").min() expected = DataFrame({"column": []}, index=[]) tm.assert_frame_equal(result, expected) def test_rolling_on_multi_index_level(self): # GH-15584 df = DataFrame( {"column": range(6)}, index=MultiIndex.from_product( [date_range("20190101", periods=3), range(2)], names=["date", "seq"] ), ) result = df.rolling("10d", on=df.index.get_level_values("date")).sum() expected = DataFrame( {"column": [0.0, 1.0, 3.0, 6.0, 10.0, 15.0]}, index=df.index ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("msg, axis", [["column", 1], ["index", 0]]) def test_nat_axis_error(msg, axis): idx = [Timestamp("2020"), NaT] kwargs = {"columns" if axis == 1 else "index": idx} df = DataFrame(np.eye(2), **kwargs) warn_msg = "The 'axis' keyword in DataFrame.rolling is deprecated" if axis == 1: warn_msg = "Support for axis=1 in DataFrame.rolling is deprecated" with pytest.raises(ValueError, match=f"{msg} values must not have NaT"): with tm.assert_produces_warning(FutureWarning, match=warn_msg): df.rolling("D", axis=axis).mean() @td.skip_if_no("pyarrow") def test_arrow_datetime_axis(): # GH 55849 expected = Series( np.arange(5, dtype=np.float64), index=Index( date_range("2020-01-01", periods=5), dtype="timestamp[ns][pyarrow]" ), ) result = expected.rolling("1D").sum() tm.assert_series_equal(result, expected)